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Abstract: We consider two one-phase nonlinear one-dimensional Stefan problems for a
semi-infinite material x > 0, with phase change temperature Tf . We assume that the heat
capacity and the thermal conductivity satisfy a Storm’s condition. In the first case, we assume
a heat flux boundary condition of the type q(t) = q0√

t
, and in the second case, we assume a

temperature boundary condition T = Ts < Tf at the fixed face. Solutions of similarity type
are obtained in both cases, and the equivalence of the two problems is demonstrated. We
also give procedures in order to compute the explicit solution.
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1. Introduction

As in [1–3] we consider the following one-phase nonlinear unidimensional Stefan problem for a
semi-infinite material x > 0, with phase change temperature Tf

s(T )
∂T

∂t
=

∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X(t) , t > 0 (1)

k(T (0, t))
∂T

∂x
(0, t) =

q0√
t
, q0 > 0 , t > 0 (2)
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T (X(t), t) = Tf (3)

k(Tf )
∂T

∂x
(X(t), t) = α

•
X (t) , t > 0 (4)

X(0) = 0 (5)

where the positive constant, α, is ρL, L is the latent heat of fusion of the medium and ρ is the density
(assumed constant). The partial differential equation of heat conduction is a nonlinear equation when
the temperature dependence of the thermal parameters is taken into account. We assume that the
metal exhibits nonlinear thermal characteristics, such that the heat capacity, cp(T ), and the thermal
conductivity, k(T ) ,satisfy a Storm’s condition [4–8]:

d
dT

(√
s(T )
k(T )

)
s(T )

= λ = const. > 0 (6)

where s(T ) = ρcp(T ). Condition (6) was originally obtained by [8] in an investigation of heat
conduction in simple monoatomic metals. In that paper, it was shown that if this condition is satisfied,
then the partial differential equation of the heat conduction can be transformed to the linear form.
There, the validity of the approximation (6) was examined for aluminum, silver, sodium, cadmium,
zinc, copper and lead.

In [7], the free boundary problems (1)–(5) (fusion case) for the particular case k(T ) = ρc/ (a+ bT )2

and s(T ) = ρc = constant was studied. The explicit solution of this problem was obtained through
the unique solution of an integral equation with time as a parameter. A similar case with the constant
temperature at the fixed face x = 0 was also studied.

The goal of this paper is to determine the temperature T = T (x, t) and the position of the phase
change boundary at time t, X = X(t), which satisfy the problems (1)–(5) . In the section after, we show
how to find a parametric solution for this problem.

In Section 3, we consider the free boundary problems (1) , (3)–(5) and a temperature boundary
condition T = Ts < Tf at the fixed face x = 0 instead of the heat flux condition (2). We improve [1],
obtaining the explicit solution and showing the existence and uniqueness of this type of solution in both
cases in which only numerical results for the case with a temperature boundary condition at the fixed
face x = 0 were presented in that work.

We also give procedures in order to compute the explicit solution in both cases.
In Section 4, we prove the equivalence of the two free boundary problems: the first with the Neumann

boundary condition (2) is considered in Section 2, and the second one with the Dirichlet constant
boundary condition (44) is considered in Section 3.

2. Solution to the Stefan Problem with the Heat Flux Condition on the Fixed Face

We consider the problems (1)–(5), and we propose a similarity type solution given by [1,9]:

T (x, t) = Φ(ξ) , ξ =
x

X(t)
(7)

where:
X(t) =

√
2γt , t > 0 (8)
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is the free boundary and γ is assumed a positive constant to be determined.
Then, we have that the problems (1)–(5) are equivalent to:

k(Φ)Φ′′(ξ) + k′(Φ)Φ′2(ξ) + γs(Φ)Φ′(ξ)ξ = 0 , 0 < ξ < 1 (9)

k(Φ(0))Φ′(0) =
√

2γq0 (10)

Φ(1) = Tf (11)

k(Φ(1))Φ′(1) = αγ (12)

If we define:

y(ξ) =

√
k(Φ (ξ))

s(Φ (ξ))
(13)

then a parametrization of the Storm condition is:

s(Φ) = − 1

λy2
dy

dΦ
, k(Φ) = −1

λ

dy

dΦ
(14)

Then, we have that the following problem is equivalent to Equations (9)–(12):

d2y

dξ2
+
γξ

y2
dy

dξ
= 0 , 0 < ξ < 1 (15)

y′(0) = −
√

2γλq0 (16)

y′(1) = −αλγ (17)

y(1) = y1 =

√
k(Tf )

s(Tf )
(18)

Lemma 1. A parametric solution to the problems (15)–(18) is given by:

ξ = ϕ1(u) =

exp(−u2

2
) + u

(
u∫
u0

exp(−x2

2
)dx− exp(−u20

2
)

u0

)

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) (19)

y = ϕ2(u) =

√
γ

{
− exp(−u20

2
)

u0
+

u∫
u0

exp(−x2

2
)dx

}

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) (20)

for:
u0 < u < u1

where u0 and u1 are the parameter values, which verify that ξ = ϕ1(u0) = 0 and ξ = ϕ1(u1) = 1.

The unknowns, γ, u0 and u1 , must verify the following system of equations:

u0 =
√

2λq0 (21)
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√
γ =

exp(−u21
2

)

αλ

(
exp(−

u20
2
)

u0
−

u1∫
u0

exp(−x2

2
)dx

) (22)

y1 =
− exp(−u21

2
)

αλ

{
exp(−u21

2
) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

)} (23)

Proof. A parametric solution of Equation (15) was deduced in [1], and it is given by:

ξ = ϕ1(u) = C2

exp(−u
2

2
) + u

 u∫
0

exp(−x
2

2
)dx+ C1

 (24)

y = ϕ2(u) =
√
γC2

 u∫
0

exp(−x
2

2
)dx+ C1

 , u > 0 (25)

where C1 and C2 are integration constants to be determined.
We choose u0 and u1 to be such that ϕ1(u0) = 0 and ϕ1(u1) = 1; we obtain that:

C1 = −
exp(−u20

2
)

u0
−

u0∫
0

exp(−x
2

2
)dx (26)

C2 =

exp(−u
2
1

2
) + u1

−exp(−u20
2

)

u0
+

u1∫
u0

exp(−x
2

2
)dx


−1

(27)

Then, we have that:

ξ = ϕ1(u) =

exp(−u2

2
) + u

(
u∫
u0

exp(−x2

2
)dx− exp(−u20

2
)

u0

)

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) , u0 < u < u1 (28)

and:

y = ϕ2(u) =

√
γ

{
− exp(−u20

2
)

u0
+

u∫
u0

exp(−x2

2
)dx

}

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) , u0 < u < u1 (29)

is a parametric solution to Equations (15)–(18).
Next, we prove that the unknowns, u0, u1 and γ , must satisfy Equations (21)–(23). From

Equations (28) and (29), we have:

y′(ξ) =
ϕ′2(u)

ϕ′1(u)
=

√
γ exp(−u2

2
)

u∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

(30)
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Then:
y′(0) = −√γu0 (31)

and from Equation (16), we have Equation (21).
Analogously, we have:

y′(1) =
ϕ′2(u1)
ϕ′1(u1)

=

√
γ exp(−u21

2
)

u1∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

(32)

and by Equation (17), we have:

√
γ exp(−u21

2
)

u1∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

= −αλγ (33)

that is, Equation (22).
Last, we have:

y(1) = ϕ2(u1) =

√
γ

{
− exp(−u20

2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

}

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) (34)

and taking into account Equation (18), we obtain Equation (23). The Lemma 1 is proven.

Next, we want to find u0, u1 and γ , the solutions to Equations (21)–(23). Obviously, the solution
u0 > 0 is determined by Equation (21). To obtain u1 and γ, previously, we define the family of functions
Fm = Fm(x) for x ≥ m, with m > 0 given by:

Fm(x) = exp(−x
2

2
) + x

 x∫
m

exp(−z
2

2
)dz −

exp(−m2

2
)

m

 (35)

=

√
π

2
x
[
g
(

x√
2
, 1√

π

)
− g

(
m√
2
, 1√

π

)]
, x ≥ m (36)

where [4]:

g(x, p) = erf(x) + p
exp(−x2)

x
, p > 0, x > 0 (37)

and:

erf(x) =
2√
π

x∫
0

exp(−z2)dz, x > 0

Now, the system of Equations (22)–(23) can be expressed as follows:

y1 =
− exp(−u21

2
)

αλ F√2λq0 (u1)
(38)



Mathematics 2014, 2 6

√
γ =

exp(−u21
2

)

αλ

(
exp(−

u20
2
)

u0
−

u1∫
u0

exp(−x2

2
)dx

) (39)

Lemma 2. For each m > 0, the function Fm = Fm(x) satisfies the following properties:

Fm (m) = 0 , F (+∞) = −∞ (40)

F ′m(x) =

√
π

2

{
erf

(
x√
2

)
− g

(
m√
2
, 1√

π

)}
< 0 (41)

Lemma 3. The system of Equations (22)–(23) has a unique solution u1, γ , where u1 satisfies:

F√2λq0 (u1) =
− exp(−u21

2
)

αλy1
(42)

and γ is given by:
√
γ =

exp(−u21
2

)

αλ

(
exp(−λ2q20)√

2λq0
−

u1∫
√
2λq0

exp(−x2

2
)dx

) (43)

Proof: From the properties of function F√2λq0 , it is easy to see that Equation (42) has a unique
solution, u1. The unknown γ is determined by Equation (43). Lemma 3 is proven.

Summarizing, we can enunciate the following theorem.
Theorem 4. The problems (1)–(5) have a unique solution of a similarity type.

Now, we give a procedure in order to compute the explicit solution. Fixing the data,
α, λ, q0, Tf , k(T ) and s(T ), of the problems (1)–(5), to obtain the free boundary, X(t), and the
temperature, T (x, t), for 0 < x < X(t), t > 0, we follow the following process:

(i) We obtain the unique solutions, u0, u1 and γ , of Equations (21)–(23).

(ii) For t > 0 , we compute:
X(t) =

√
2γt

and for each 0 < x < X(t), we obtain:
x

X(t)

(iii) Taking into account that ϕ1(u) is an increasing function, we determine:

u = ϕ−11

(
x

X(t)

)
and ϕ2(u)

where ϕ1 and ϕ2 are given by Equations (28) and (29).
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(iv) We have:

P
(
(ϕ2(u))2

)
=

(
k

s

)−1 (
(ϕ2(u))2

)
where P =

(
k
s

)−1 is the inverse function of the function, k
s
, which is an increasing function by

the condition (6) .

(v) We obtain the temperature:

T (x, t) = P
((
ϕ2

(
ϕ−11 (x/X(t))

))2)
3. Solution to the Stefan Problem with a Temperature Boundary Condition on the Fixed Face

In this section, we will prove the existence and uniqueness of the solution to the problems (1), (3)–(6)
and the temperature boundary condition at the fixed face x = 0 given by:

T (0, t) = Ts , t > 0 (44)

We define the same transformations, (7), (8), (13) and (14), as was done for the problem in the previous
section. We obtain an equivalent problem given by Equations (15), (17), (18) and:

y(0) = y0 =

√
k(Ts)

s(Ts)
(45)

Remark 1. Assumption (6) enables one to deduce that y1 < y0.

Lemma 5. A parametric solution to the problems (15), (17), (18) and (45) is given by Equations (19)
and (20), where the unknown u0, u1 and γ must satisfy the following system of equations:

y1 =
√
γ
Fu0(u1)− exp(−u21

2
)

u1Fu0(u1)
(46)

√
γ =

u1y1
1 + λαy1

(47)

y0 = −√γ
exp(−u20

2
)

u0Fu0(u1)
(48)

where Fu0 was defined in Equation (35).
Proof: Proceeding as in the previous section, we determine a parametric solution of Equation (15)

given by Equations (28) and (29).
Next, we prove that the unknowns, u0, u1 and γ , must satisfy Equations (46)–(48). From Equations
(19), (20) and (30), we have:

√
γ
ξ

y
− 1
√
γ
y′(ξ) =

√
γ
ϕ1(u)

ϕ2(u)
− 1
√
γ

ϕ′2(u)

ϕ′1(u)
= u (49)

Then, for ξ = 1, we have:
√
γ

1

y1
− 1
√
γ
y′(1) = u1 (50)
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and taking into account Equation (17), we obtain:

√
γ

1

y1
− 1
√
γ

(−αλγ) = u1 (51)

that is, Equation (47).
From Equations (18) and (29), it is easy to see that Equation (46) is obtained.
Finally, from Equations (29) and (45), we have Equation (48).
Lemma 5 is proven.

Lemma 6. The system of Equations (46)–(48) has a unique solution, u0, u1(u0) and γ = γ(u1(u0)).

Proof. In order to solve the system of Equations (46)–(48), first, we replace the expression of
√
γ given

by Equation (47) in Equations (46) and (48); we get:

y1
y0 (1 + λαy1)

exp(−u20
2

)

u0
=
−Fu0(u1)

u1
(52)

− λαy1Fu0(u1) = exp(−u
2
1

2
) (53)

By using Lemma 2, for each u0 > 0, we have that there exists a unique u1 = u1(u0) solution to
Equation (53).

If we define:
V (x) = g

(
x√
2
, β
)
, W (x) = g

(
u1(x)√

2
, 1√

π

)
, x > 0

where β = 1√
π

(
1− y1

y0(1+λαy1)

)
∈
(

0, 1√
π

)
(see Remark 1), then the Equation (52) can be rewritten as

V (u0) = W (u0) , u0 > 0 (54)

Taking into account that this functions satisfy the following properties [4]:

V (0+) = +∞ , V (+∞) = 1−

V ′(x) =



< 0 if 0 < x <

√
β

2

(
1√
π
−β
)

= 0 if x =
√

β

2

(
1√
π
−β
)

> 0 if x >
√

β

2

(
1√
π
−β
)

W (0) = g
(
u1(0)√

2
, 1√

π

)
> 1 , W (+∞) = 1+ , W ′(x) < 0, x > 0

Equation (54) admits a unique solution u0 > 0.

Therefore, the system of Equations (46)–(48) has a unique solution u0, u1 (u0) and γ = γ (u1 (u0)).
Lemma 6 is proven.
Remark 2. The solution of Equation (54) verifies u0 < Q−1 (β

√
π), where:

Q(x) =
√
πx exp(x2) (1− erf(x))
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Finally, we have the following theorem as before:
Theorem 7. The problems (1), (3)–(5) and (44) have a unique solution of a similarity type .

Next, we give a procedure similar to that given in the previous section to compute the solution of the
problems (1), (3)–(5) and (44).

Fixing the data α, λ, T0, Tf , k(T ) and s(T ), in order to obtain the free boundary, X(t), and the
temperature, T (x, t), for 0 < x < X(t), t > 0, we can follow the following process:

(i) We obtain the unique solutions, u0, u1 and γ , of Equations (46)–(48).

(ii) For t > 0 we compute:
X(t) =

√
2γt

and for each 0 < x < X(t), we obtain:
x

X(t)

(iii) We determine:

u = ϕ−11

(
x

X(t)

)
and ϕ2(u)

where ϕ1 and ϕ2 are given by Equations (28)–(29) .

(iv) We have

P
(
(ϕ2(u))2

)
=

(
k

s

)−1 (
(ϕ2(u))2

)
where P =

(
k
s

)−1 is the inverse function of the function, k
s
.

(v) We obtain the temperature:

T (x, t) = P
((
ϕ2

(
ϕ−11 (x/X(t))

))2) (55)

4. Equivalence of the Two Free Boundary Problems

We consider the solution, T (x, t), X(t), of the problems (1), (3)–(5) and (44), given by Equation (55);
X(t) =

√
2γt is the free boundary, ϕ1(u) and ϕ2(u) are given by Equations (28) and (29) with

u0, u1(u0) and γ = γ(u1(u0)) the unique solutions to Equations (46)–(48). We compute:

Tx(x, t) = P ′
(
y2 (ξ)

)
2y (ξ) y′ (ξ) ξx (56)

and we have:
Tx(0, t) = P ′

(
y20
)

2y0 (−u0
√
γ)

1√
2γt

(57)

from Equation (6), and the definition of function P results:

P ′
(
y20
)

=
−
√
s(Ts)

2λk3/2(Ts)
(58)

Then, we have:
Tx(0, t) =

u0

λk(Ts)
√

2t
(59)
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This is:
k (T (0, t))Tx(0, t) =

u0

λ
√

2t
(60)

meaning that the heat flux at the fixed face x = 0 is of the type q̃0/
√
t. If we replace q0 by q̃0 = u0/

√
2λ

in the condition (2) and we solve the problems (1)–(5), we obtain the solution:

T̃ (x, t) = P
(
(ϕ̃2(u))2

)
, x =

√
2γ̃t ϕ̃1(u) , X̃(t) =

√
2γ̃t , t > 0 (61)

where ϕ̃1 and ϕ̃2 are given by:

ϕ̃1(u) =
Fũ0(u)

Fũ0(ũ1)
, ũ0 < u < ũ1 (62)

ϕ̃2(u) =

√
γ̃

{
− exp(−ũ20)

ũ0
+

u∫̃
u0

exp(−x2

2
)dx

}
Fũ0(ũ1)

, ũ0 < u < ũ1 (63)

and ũ0, ũ1, γ̃ are the solutions of the following system:

ũ0 =
√

2λq̃0 (64)

F√2λq̃0 (ũ1) =
− exp(− ũ21

2
)

αλy1
(65)

√
γ̃ =

exp(− ũ21
2

)

αλ

(
exp(−λ2q̃20)√

2λq̃0
−

ũ1∫
√
2λq̃0

exp(−x2

2
)dx

) (66)

Next, we prove that ũ0 = u0, ũ1 = u1 and γ̃ = γ, which are the solutions of Equations (46)–(48).
From Equation (64) and the definition of q̃0 , we obtain ũ0 = u0. By Equations (47)–(48), we have

that u0 and u1 satisfy:

y0 = −
u1y1 exp(−u20

2
)

(1 + λαy1)u0Fu0(u1)
(67)

which is equivalent to:

Fũ0 (u1) =
− exp(−u21

2
)

αλy1
(68)

Therefore, we have that u1 is the solution of Equation (65); then ũ1 = u1.

Finally, we have that Equation (65) is equivalent to:

√
γ̃ =
− exp(−u21

2
)
√
γ

αλy1Fu0(u1)
(69)

and by using Equation (68), we obtain γ̃ = γ.
Then, T̃ (x, t) = T (x, t) and X̃(t) = X(t) for all t > 0 and 0 < x < X(t).
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5. Conclusions

Two one-phase nonlinear, one-dimensional Stefan problems for a semi-infinite material x > 0, with
phase change temperature Tf have been considered with the assumption of a Storm’s condition for the
heat capacity and thermal conductivity. In one of them, a heat flux boundary condition of the type
q(t) = q0√

t
has been considered, and in the other problem, a temperature boundary condition T = Ts < Tf

at the fixed face has been studied. The existence and uniqueness of solutions of a similarity type has
been obtained in both cases. Furthermore, the procedures to compute the solutions are given. Finally,
the equivalence of two problems is proven.
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