TWO STEFAN PROBLEMS FOR A NON-CLASSICAL HEAT EQUATION WITH NONLINEAR THERMAL COEFFICIENTS

Adriana C. Briozzo and María Fernanda Natale Depto. de Matemática, F.C.E.,Univ. Austral Paraguay 1950, S2000FZF Rosario, Argentina

(Submitted by: Reza Aftabizadeh)

Abstract

The mathematical analysis of two one-phase unidimensional and non-classical Stefan problems with nonlinear thermal coefficients is obtained. Two related cases are considered, one of them has a temperature condition on the fixed face $x=0$ and the other one has a flux condition of the type $-q_{0} / \sqrt{t}\left(q_{0}>0\right)$. In the first case, the source function depends on the heat flux at the fixed face $x=0$, and in the other case it depends on the temperature at the fixed face $x=0$. In both cases, we obtain sufficient conditions in order to have the existence of an explicit solution of a similarity type, which is given by using a double fixed point.

1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free boundary problem for the classical heat equation, which requires the determination of the temperature distribution T of the liquid phase (melting problem) or the solid phase (solidification problem) and the evolution of the free boundary $x=s(t)$. Phase change problems appear frequently in industrial processes and other problems of technological interest [1, 11, 12, 17].

The Lamé-Clapeyron-Stefan problem is nonlinear even in its simplest form due to the free boundary conditions. If the thermal coefficients of the material are temperature-dependent, we have a doubly nonlinear free boundary problem.

The present study provides the existence of solutions of the similarity type to two nonlinear one-phase melting problems for non-classical heat equations. First, we consider the following non-classical free boundary problem for a semi-infinite material $[4,7,8,11]$:

$$
\begin{equation*}
\rho(T) c(T) T_{t}=\left(k(T) T_{x}\right)_{x}-F(W(t), t), \quad 0<x<s(t), t>0 \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
\text { Adriana C. Briozzo añd María Feŕnanda Natale } \\
\text { Khayy } T(0, t)=T_{b} \text { shing } \tag{1.2}\\
T(s(t), t)=T_{m} \tag{1.3}\\
k(T(s(t), t)) T_{x}(s(t), t)=-\rho_{0} l \stackrel{\bullet}{s}(t) \tag{1.4}\\
s(0)=0 \tag{1.5}
\end{gather*}
$$
\]

where $T=T(x, t)$ is the temperature of the liquid phase; $\rho(T), c(T)$ and $k(T)$ are the body's density, its specific heat, and its thermal conductivity, respectively; T_{m} is the phase-change temperature, $T_{b}>T_{m}$ is the temperature on the fixed face $x=0 ; \rho_{0}>0$ is its constant density of mass at the melting temperature; $l>0$ is the latent heat of fusion by unity of mass, and $s(t)$ is the position of phase change location. We assume that $\rho(T), c(T)$ and $k(T)$ are continuous functions of the temperature and $k(T) \geq k^{*}>0$. The control function F depends on the evolution of the heat flux at the boundary $x=0$ as follows

$$
\begin{equation*}
W(t)=T_{x}(0, t), \quad F(W(t), t)=F\left(T_{x}(0, t), t\right)=\frac{\lambda_{0}}{\sqrt{t}} T_{x}(0, t) \tag{1.6}
\end{equation*}
$$

where λ_{0} is a given positive constant.
Then, we consider an analogous problem (1.1), (1.3)-(1.5) and the temperature condition (1.2) will be replaced by the following flux condition

$$
\begin{equation*}
k(T(0, t)) T_{x}(0, t)=-q_{0} / \sqrt{t} \tag{1.7}
\end{equation*}
$$

at the fixed face $x=0$ where q_{0} is a positive constant. In this case, the control function F depends on the evolution of the temperature at the boundary $x=0$ as follows

$$
\begin{equation*}
W(t)=T(0, t), \quad F(W(t), t)=F(T(0, t), t)=\frac{\lambda_{0}}{t} T(0, t),\left(\lambda_{0}>0\right) \tag{1.8}
\end{equation*}
$$

Here, $-q_{0} / \sqrt{t}$ denotes the prescribed flux on the boundary $x=0$, which is of the type imposed in [19]. Furthermore, this kind of heat flux on the fixed boundary was also considered in several applied problems, e.g. [2, 10, 18].

The non-classical heat conduction problem for a semi-infinite material was studied in $[3,9,13,16,20,22]$. A problem of this type is the following:

$$
\begin{align*}
T_{t}-T_{x x} & =-F(W(t), t), \quad x>0, t>0 \tag{1.9}\\
T(0, t) & =f(t), t>0 \quad T(x, 0)=h(x), x>0
\end{align*}
$$

where functions $f=f(t)$ and $h=h(x)$ are continuous real functions, and F is a given function of two variables. A particular and interesting case is the following:

$$
\begin{equation*}
F(W(t), t)=\frac{\lambda_{0}}{\sqrt{t}} W(t),\left(\lambda_{0}>0\right) \tag{1.10}
\end{equation*}
$$

where $W(t)$ represents the heat flux on the boundary $x=0$, that is, $W(t)=$ $T_{x}(0, t)$. Problems of the type (1.9) and (1.10) can be thought of by modelling of a system of temperature regulation in isotropic mediums [20, 22] with nonuniform source term, which provides a cooling or heating effect depending upon the properties of F related to the course of the heat flux (or the temperature in other cases) at the boundary $x=0$ [20].

In the particular case of a bounded domain, a class of problems, when the heat source is uniform and belongs to a given multivalued function from \mathbb{R} into itself was studied in [16] regarding existence, uniqueness and asymptotic behavior. Moreover, in [3], conditions are given on the nonlinearity of the source term F so as to accelerate the convergence of the solution to the steady-state solution. Other references on the subject are in $[13,14,15]$.

Non-classical free boundary problems of the Stefan type were studied in [5,6] from a theoretical point of view by using an equivalent formulation through a system of second kind Volterra integral equations. In [7], the one-phase unidimensional Stefan problems for non-classical heat equations with constants thermal coefficients and a source function F given by (1.6) or (1.8) were considered. Exact solutions of a similarity type were obtained in all cases.

The problem (1.1)-(1.5) with null source term was firstly considered in [21] where an equivalent integral equation was obtained, however, any mathematical result is given in [21]. In [4], the existence of an explicit solution of a similarity type by using a double fixed point was given.

The plan of the paper is the following: In Section II, we prove the existence of at least one explicit solution of a similarity type for the problem (1.1)(1.5) and the control function given by (1.6) by using a double fixed point for the integral equation (2.15) and the transcendental equation (2.20) under certain hypothesis for data.

In Section III, we consider the analogous problem (1.1), (1.3)-(1.5), (1.7) and a control function given by (1.8). We prove the existence of at least one explicit solution of a similarly type by using a double fixed point for the integral equation (2.58) and the transcendental equation (2.62) under certain hypothesis for data.
2. The one-phase non-Classical Stefan problem with nonlinear THERMAL COEFFICIENTS WITH TEMPERATURE BOUNDARY CONDITION on the fixed face
If we define the following transformation [4, 21]

$$
\begin{equation*}
\theta(x, t)=\frac{T(x, t)-T_{m}}{T_{b}-T_{m}} \tag{2.1}
\end{equation*}
$$

then the problem (1.1)-(1.5) becomes

$$
\begin{gather*}
N(\theta) \theta_{t}=\alpha_{0}\left(L(\theta) \theta_{x}\right)_{x}-\frac{F\left(\left(T_{b}-T_{m}\right) \theta_{x}(0, t), t\right)}{c_{0} \rho_{0}\left(T_{b}-T_{m}\right)}, 0<x<s(t), t>0 \tag{2.2}\\
\theta(0, t)=1, t>0 \tag{2.3}\\
\theta(s(t), t)=0, t>0 \tag{2.4}\\
k\left(T_{m}\right) \theta_{x}(s(t), t)=\frac{-\rho_{0} l}{T_{b}-T_{m}} \stackrel{s}{ }(t), t>0 \tag{2.5}\\
s(0)=0, \tag{2.6}
\end{gather*}
$$

where

$$
\begin{equation*}
N(T)=\frac{\rho(T) c(T)}{\rho_{0} c_{0}}, \quad L(T)=\frac{k(T)}{k_{0}} \tag{2.7}
\end{equation*}
$$

and k_{0}, ρ_{0}, c_{0} and $\alpha_{0}=\frac{k_{0}}{\rho_{0} c_{0}}$ are the reference thermal conductivity, density of mass, specific heat and thermal diffusive, respectively.

Now we assume a similarity solution of the type

$$
\begin{equation*}
\theta(x, t)=f(\eta), \quad \eta=\frac{x}{2 \sqrt{\alpha_{0} t}} . \tag{2.8}
\end{equation*}
$$

The free boundary conditions implies that the free boundary $s(t)$ must be of the type

$$
\begin{equation*}
s(t)=2 \eta_{0} \sqrt{\alpha_{0} t} \tag{2.9}
\end{equation*}
$$

where η_{0} is a positive parameter to be determined later.
Therefore, the conditions (2.2)-(2.5) is reduced to the following problem:

$$
\begin{gather*}
{\left[L(f) f^{\prime}(\eta)\right]^{\prime}+2 \eta N(f) f^{\prime}(\eta)=A f^{\prime}(0), 0<\eta<\eta_{0}} \tag{2.10}\\
f(0)=1 \tag{2.11}\\
f\left(\eta_{0}\right)=0 \tag{2.12}\\
f^{\prime}\left(\eta_{0}\right)=-B \eta_{0}, \tag{2.13}
\end{gather*}
$$

where

$$
\begin{equation*}
A=\frac{2 \lambda_{0}}{c_{0} \rho_{0} \sqrt{\alpha_{0}}}, \quad B=\frac{2 \alpha_{0} \rho_{0} l}{k\left(T_{m}\right)\left(T_{b}-T_{m}\right)} . \tag{2.14}
\end{equation*}
$$

We have that the problem 2.10)-(2.12) is equivalent to the following nonlinear integral equation of Volterra type:

$$
\begin{equation*}
f(\eta)=1-\frac{\Phi[\eta, L(f), N(f)]}{\Phi\left[\eta_{0}, L(f), N(f)\right]}, \tag{2.15}
\end{equation*}
$$

where Φ is given by

$$
\begin{equation*}
\Phi[\eta, L(f), N(f)]:=\int_{0}^{\eta} \frac{1}{G(f)(t)} d t+A \int_{0}^{\eta} \frac{w(f)(t)}{G(f)(t)} d t \tag{2.16}
\end{equation*}
$$

and

$$
\begin{align*}
G(f)(x):= & \frac{L(f(x))}{L(f(0))} I(f)(x), \quad I(f)(x):=\exp \left(2 \int_{0}^{x} s \frac{N(f(s))}{L(f(s))} d s\right), \tag{2.17}\\
& w(f)(x):=\int_{0}^{x} \frac{G(f)(t)}{L(f)(t)} d t=\frac{1}{L(f(0))} \int_{0}^{x} I(f)(t) d t \tag{2.18}
\end{align*}
$$

with

$$
\begin{equation*}
L(f(0))=L\left(T_{m}(f(0)+1)\right)=\frac{k\left(T_{m}(f(0)+1)\right)}{k_{0}} . \tag{2.19}
\end{equation*}
$$

The condition (2.13) becomes

$$
\begin{equation*}
A \int_{0}^{\eta} \frac{G(f)(t)}{L(f)(t)} d t+1=B \eta_{0} G(f)\left(\eta_{0}\right) \Phi\left[\eta_{0}, L(f), N(f)\right] . \tag{2.20}
\end{equation*}
$$

First, in order to prove the existence of the solution of the system (2.15) and (2.20), we will obtain some preliminary results following [4, 21]. Then, we shall prove that the integral equation (2.15) has a unique solution for any given $\eta_{0}>0$ by using a fixed point theorem. Secondly, we shall consider (2.20).

For convenience of notation, we will note $\Phi[\eta, f] \equiv \Phi[\eta, L(f), N(f)]$. We suppose that there exist $N_{m}, N_{M}, L_{m}, L_{M}$ positive constants such as

$$
\begin{equation*}
L_{m} \leq L(T) \leq L_{M} \quad, \quad N_{m} \leq N(T) \leq N_{M} \tag{2.21}
\end{equation*}
$$

Furthermore, we assume that the dimensionless thermal conductivity and specific heat are Lipschitz functions, i.e., there exist positive constants \widetilde{L} and \widetilde{N} such that

$$
\begin{align*}
|L(g)-L(h)| \leq \widetilde{L}\|g-h\| \quad, \quad \forall g, h \in C^{0}\left(R_{0}^{+}\right) \cap L^{\infty}\left(R_{0}^{+}\right) \tag{2.22}\\
|N(g)-N(h)| \leq \widetilde{N}\|g-h\| \quad, \quad \forall g, h \in C^{0}\left(R_{0}^{+}\right) \cap L^{\infty}\left(R_{0}^{+}\right) . \tag{2.23}
\end{align*}
$$

Then, we get:
Lemma 2.1. For $0<\eta<\eta_{0}$, we have

$$
\begin{gather*}
\exp \left(\frac{N_{m} \eta^{2}}{L_{M}}\right) \leq I(f)(\eta) \leq \exp \left(\frac{N_{M} \eta^{2}}{L_{m}}\right) \tag{2.24}\\
\frac{L_{m}}{L_{M}} \leq G(f)(\eta) \leq \frac{L_{M}}{L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \tag{2.25}\\
\eta_{0} \frac{L_{m}}{L_{M}} \exp \left(-\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \leq \int_{0}^{\eta} \frac{1}{G(f)(t)} d t \leq \frac{L_{M}}{L_{m}} \eta_{0} \tag{2.26}\\
\frac{\eta_{0}}{L_{M}} \leq w(f)(\eta) \leq \frac{\eta_{0}^{2}}{2 L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \tag{2.27}
\end{gather*}
$$

$$
\begin{gather*}
\int_{0}^{\eta} \frac{w(f)(t) y}{G(f)(t)} d t \leq \frac{\eta_{0}^{3} L_{M}}{2 L_{m}^{2}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \tag{2.28}\\
\frac{L_{m}}{L_{M}} \eta_{0} \exp \left(-\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \leq \Phi[\eta, f] \leq \frac{L_{M}}{L_{m}} \eta_{0}+A \frac{\eta_{0}^{3} L_{M}}{2 L_{m}^{2}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \tag{2.29}
\end{gather*}
$$

We consider $C^{0}\left[0, \eta_{0}\right]$, the space of continuous real functions defined on $\left[0, \eta_{0}\right]$ with its norm $\|f\|=\max _{\eta \in\left[0, \eta_{0}\right]}|f(\eta)|$.

Lemma 2.2. Let η_{0} be a given positive real number. For all $f, f^{*} \in$ $C^{0}\left[0, \eta_{0}\right], \forall \eta \in\left(0, \eta_{0}\right)$, we have

$$
\begin{gather*}
\left|I(f)(\eta)-I\left(f^{*}\right)(\eta)\right| \leq C_{1}\left\|f^{*}-f\right\| \tag{2.30}\\
\left|L(f(\eta)) L\left(f^{*}(0)\right)-L\left(f^{*}(\eta)\right) L(f(0))\right| \leq C_{2}\left\|f^{*}-f\right\| \tag{2.31}\\
\left|G(f)(\eta)-G\left(f^{*}\right)(\eta)\right| \leq C_{3}\left\|f^{*}-f\right\| \tag{2.32}\\
\left|\int_{0}^{\eta}\left(\frac{1}{G(f)(t)}-\frac{1}{G\left(f^{*}\right)(t)}\right) d t\right| \leq \eta_{0} C_{4}\left\|f^{*}-f\right\| \tag{2.33}\\
\left|w(f)(\eta)-w\left(f^{*}\right)(\eta)\right| \leq C_{5}\left\|f^{*}-f\right\| \tag{2.34}\\
\left|\int_{0}^{\eta}\left(\frac{w(f)(t)}{G(f)(t)}-\frac{w\left(f^{*}\right)(t)}{G\left(f^{*}\right)(t)}\right) d t\right| \leq \eta_{0} C_{6}\left\|f^{*}-f\right\| \tag{2.35}\\
\left|\Phi[\eta, f]-\Phi\left[\eta, f^{*}\right]\right| \leq \eta_{0} C_{7}\left\|f^{*}-f\right\| \tag{2.36}
\end{gather*}
$$

where

$$
\begin{gathered}
C_{1}=\exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \frac{\eta_{0}^{2}}{L_{m}^{2}}\left(\widetilde{N} L_{M}+N_{M} \widetilde{L}\right), C_{2}=2 L_{M} \widetilde{L} \\
C_{3}=\frac{L_{M}^{2} C_{1}+C_{2} \exp \left(\frac{N_{M} \eta_{0}^{2}}{L_{m}}\right)}{L_{m}^{2}}, C_{4}=\frac{L_{M}^{2}}{L_{m}^{2}} C_{3} \\
C_{5}=\eta_{0} \frac{L_{M}}{L_{m}^{2}}\left[\frac{\widetilde{L}}{L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)+C_{3}\right] \\
C_{6}=\exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \frac{L_{M}^{2}}{L_{m}^{3}}\left[\frac{\eta_{0}^{2}}{2} C_{3}+L_{M} C_{5}\right], C_{7}=C_{4}+A C_{6}
\end{gathered}
$$

Proof. By using the mean value theorem and (2.21), (2.22), (2.23), we have

$$
\begin{aligned}
& \left|I(f)(\eta)-I\left(f^{*}\right)(\eta)\right|=\left|\exp \left(2 \int_{0}^{\eta} u \frac{N(f(u))}{L(f(u))} d u\right)-\exp \left(2 \int_{0}^{\eta} u \frac{N\left(f^{*}(u)\right)}{L\left(f^{*}(u)\right)} d u\right)\right| \\
& \quad \leq \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \int_{0}^{\eta} 2 u\left|\frac{N(f(u))}{L(f(u))}-\frac{N\left(f^{*}(u)\right)}{L\left(f^{*}(u)\right)}\right| d u \\
& \leq \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \int_{0}^{\eta} \frac{2 u}{L(f(u)) L\left(f^{*}(u)\right.}\left|L\left(f^{*}(u)\right)\right|\left|N(f(u))-N\left(f^{*}(u)\right)\right|
\end{aligned}
$$

$$
\begin{gathered}
+\left|N\left(f^{*}(u)\right) \| L(f(u))-L\left(f^{*}(u)\right)\right| d u \\
\leq \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) \frac{\eta_{0}^{2}}{L_{m}^{2}}\left(\widetilde{N} L_{M}+N_{M} \widetilde{L}\right)\left\|f^{*}-f\right\|=C_{1}\left\|f^{*}-f\right\|
\end{gathered}
$$

Taking into account (2.21), (2.22), (2.23), it is easy to see (2.31).
From (2.17), we have

$$
\begin{aligned}
& \left|G(f)(\eta)-G\left(f^{*}\right)(\eta)\right| \\
& =\frac{\left|L(f(u)) L\left(f^{*}(0)\right) I(f)(\eta)-L\left(f^{*}(u)\right) L(f(0)) I\left(f^{*}\right)(\eta)\right|}{L\left(f^{*}(0)\right) L(f(0))} \\
& \leq \frac{1}{L\left(f^{*}(0)\right) L(f(0))}\left[L(f(u)) L\left(f^{*}(0)\right)\left|I(f)(\eta)-I\left(f^{*}\right)(\eta)\right|\right. \\
& \quad+\left|L(f(\eta)) L\left(f^{*}(0)\right)-L\left(f^{*}(\eta)\right) L(f(0))\right| I\left(f^{*}\right)(\eta) \\
& \leq \frac{L_{M}^{2} C_{1}\left\|f^{*}-f\right\|+C_{2}\left\|f^{*}-f\right\| \exp \left(\frac{N_{M} x^{2}}{L_{m}}\right)}{L_{m}^{2}} \\
& \quad \times \frac{L_{M}^{2} C_{1}+C_{2} \exp \left(\frac{N_{M} x^{2}}{L_{m}}\right)}{L_{m}^{2}}\left\|f^{*}-f\right\|=C_{3}\left\|f^{*}-f\right\| .
\end{aligned}
$$

From the above inequality and Lemma 1, we have

$$
\begin{aligned}
\left|\int_{0}^{\eta}\left(\frac{1}{G(f)(t)}-\frac{1}{G\left(f^{*}\right)(t)}\right) d t\right| & \leq \int_{0}^{\eta} \frac{\left|G(f)(t)-G\left(f^{*}\right)(t)\right|}{G(f)(t) G\left(f^{*}\right)(t)} d t \\
& \leq \frac{L_{M}^{2}}{L_{m}^{2}} \eta_{0} C_{3}\left\|f^{*}-f\right\| .
\end{aligned}
$$

To prove (2.34), we write

$$
\begin{aligned}
& \left|w(f)(\eta)-w\left(f^{*}\right)(\eta)\right| \leq \int_{0}^{\eta}\left|\frac{G(f)(t)}{L(f(t))}-\frac{G\left(f^{*}\right)(t)}{L\left(f^{*}(t)\right)}\right| d t \\
& \leq \int_{0}^{\eta} \frac{G(f)(t)\left|L(f(\eta))-L\left(f^{*}(\eta)\right)\right|+L(f(t))\left|G(f)(t)-G\left(f^{*}\right)(t)\right|}{L(f(t)) L\left(f^{*}(t)\right)} d t \\
& \leq \frac{\eta_{0}}{L_{m}^{2}}\left[\widetilde{L}\left\|f-f^{*}\right\| \frac{L_{M}}{L_{m}} \exp \left(t \frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)+L_{M} C_{3}\left\|f^{*}-f\right\|\right]=C_{5}\left\|f^{*}-f\right\| .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \left|\int_{0}^{\eta}\left(\frac{w(f)(t)}{G(f)(t)}-\frac{w\left(f^{*}\right)(t)}{G\left(f^{*}\right)(t)}\right) d t\right| \\
& \leq \int_{0}^{\eta} \frac{w(f)(t)\left|G(f)(t)-G\left(f^{*}\right)(t)\right|+G(f(t))\left|w(f)(t)-w\left(f^{*}\right)(t)\right|}{G(f(t)) G\left(f^{*}(t)\right)} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\eta_{0} L_{M}^{2}}{L_{m}^{2}}\left[\frac{\eta_{0}^{2}}{2 L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) C_{3}\left\|f^{*}-f\right\|+\frac{L_{M}}{L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) C_{5}\left\|f^{*}-f\right\|\right] \\
& =\frac{\eta_{0} L_{M}^{2}}{L_{m}^{3}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\left[\frac{\eta_{0}^{2}}{2} C_{3}+L_{M} C_{5}\right]\left\|f^{*}-f\right\|=\eta_{0} C_{6}\left\|f^{*}-f\right\|
\end{aligned}
$$

Finally, taking into account (2.16), (2.33) and (2.35), it is easy to see that (2.36) holds.

Theorem 2.1. Let η_{0} be a given positive real number. We suppose that (2.21), (2.22), and (2.23) hold. If η_{0} satisfies the inequality

$$
\begin{equation*}
\beta\left(\eta_{0}\right):=\frac{2 L_{M}^{3}}{L_{m}^{3}} \exp ^{2}\left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\left[1+A \frac{\eta_{0}^{2}}{2 L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\right] C_{7}<1, \tag{2.37}
\end{equation*}
$$

then there exists a unique solution $f \in C^{0}\left[0, \eta_{0}\right]$ of the integral equation (2.15).

Proof. Let $W: C^{0}\left[0, \eta_{0}\right] \longrightarrow C^{0}\left[0, \eta_{0}\right]$ be the operator defined by

$$
\begin{equation*}
W(f)_{(\eta)}=1-\frac{\Phi[\eta, f]}{\Phi\left[\eta_{0}, f\right]}, \quad f \in C^{0}\left[0, \eta_{0}\right] . \tag{2.38}
\end{equation*}
$$

The solution of the equation (2.15) is the fixed point of the operator W, that is,

$$
\begin{equation*}
W(f(\eta))=f(\eta) \quad, \quad 0<\eta<\eta_{0} . \tag{2.39}
\end{equation*}
$$

We note that the nonlinear operator W is, in fact, self mapping on $C^{0}\left[0, \eta_{0}\right]$ by the assumptions on the thermal coefficients.

Let $f, f^{*} \in C^{0}\left[0, \eta_{0}\right]$, then we obtain

$$
\left\|W(f)-W\left(f^{*}\right)\right\|=\underset{\eta \in\left[0, \eta_{0}\right]}{M a x}\left|W(f(\eta))-W\left(f^{*}(\eta)\right)\right|
$$

$$
\begin{aligned}
& \underset{\eta \in\left[0, \eta_{0}\right]}{\operatorname{Max}} \leq\left|\frac{\Phi\left[\eta, f^{*}\right] \Phi\left[\eta_{0}, f\right]-\Phi\left[\eta_{0}, f^{*}\right] \Phi[\eta, f]}{\Phi\left[\eta_{0}, f\right] \Phi\left[\eta_{0}, f^{*}\right]}\right| \\
& \leq R \underset{\eta \in\left[0, \eta_{0}\right]}{\operatorname{Max}}\left|\Phi\left[\eta, f^{*}\right] \Phi\left[\eta_{0}, f\right]-\Phi\left[\eta_{0}, f^{*}\right] \Phi[\eta, f]\right| \\
& \leq R \underset{\eta \in\left[0, \eta_{0}\right]}{\operatorname{Max}}\left(\left|\Phi\left[\eta, f^{*}\right]\right|\left|\Phi\left[\eta_{0}, f\right]-\Phi\left[\eta_{0}, f^{*}\right]\right|+\left|\Phi\left[\eta_{0}, f^{*}\right]\right|\left|\Phi\left[\eta, f^{*}\right]-\Phi[\eta, f]\right|\right)
\end{aligned}
$$

where

$$
\begin{equation*}
R=\frac{L_{M}^{2}}{L_{m}^{2} \eta_{0}^{2}} \exp ^{2}\left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)>0 . \tag{2.40}
\end{equation*}
$$

Finally, from Lemmas 1 and 2 and taking into account that $0<\eta<\eta_{0}$, we have

$$
\left\|W(f)-W\left(f^{*}\right)\right\| \leq \beta\left(\eta_{0}\right)\left\|f^{*}-f\right\| .
$$

Then, W is a contraction operator; therefore, there exists a unique solution of (2.15) if the condition (2.37) is satisfied.

Remark 2.1. The solution f of the integral equation (2.15), given by the Theorem 3, depends on the real number $\eta_{0}>0$. For convenience in the notation from now on, we take

$$
\begin{equation*}
f(\eta)=f_{\eta_{0}}(\eta)=f\left(\eta_{0}, \eta\right), \quad 0<\eta<\eta_{0}, \quad \eta_{0}>0 \tag{2.41}
\end{equation*}
$$

Let Ω be the set defined by
$\Omega=\left\{\eta_{0} \in R^{+} / \beta\left(\eta_{0}\right)<1\right\}=\left\{\eta_{0} \in R^{+} /\right.$there exists a solution of $\left.(2.15)\right\}$.
Lemma 2.3. If

$$
\begin{equation*}
4 L_{M}^{5} \widetilde{L} / L_{m}^{7}<1 \tag{2.42}
\end{equation*}
$$

then there exists a positive number η_{0}^{*} such that

$$
\beta\left(\eta_{0}\right)<1 \text { if } 0<\eta_{0}<\eta_{0}^{*} \quad, \quad \beta\left(\eta_{0}\right) \geq 1 \text { if } \eta_{0} \geq \eta_{0}^{*}
$$

Proof. We have $\beta(0)=4 L_{M}^{5} \widetilde{L} / L_{m}^{7}, \beta(+\infty)=+\infty$ and $\beta^{\prime}\left(\eta_{0}\right)>0 \forall \eta_{0}>0$. Then, $\Omega=\left(0, \eta_{0}^{*}\right)$ where $\beta\left(\eta_{0}^{*}\right)=1$.

To prove the existence of the solution of (2.20), we rewrite it as follows

$$
\begin{equation*}
\frac{1}{G(f)(x)}-B x \int_{0}^{x} \frac{1}{G(f)(t)} d t=A B x \int_{0}^{x} \frac{w(f)(t)}{G(f)(t)} d t-\frac{A}{G(f)(x)} \int_{0}^{x} \frac{G(f)(t)}{L(f)(t)} d t \tag{2.43}
\end{equation*}
$$

where f is the solution of (2.15) given by Theorem 3 .
We define the functions

$$
\begin{gather*}
W_{1}(x):=\frac{1}{G(f)(x)}-B x \int_{0}^{x} \frac{1}{G(f)(t)} d t \tag{2.44}\\
W_{2}(x):=A B x \int_{0}^{x} \frac{w(f)(t)}{G(f)(t)} d t-\frac{A}{G(f)(x)} \int_{0}^{x} \frac{G(f)(t)}{L(f)(t)} d t \tag{2.45}
\end{gather*}
$$

Thus, the equation (2.43) is equivalent to

$$
\begin{equation*}
W_{1}(x)=W_{2}(x) \tag{2.46}
\end{equation*}
$$

Lemma 2.4. The functions W_{1} and W_{2} satisfy the following properties
(i) $W_{1}(0)=1,($ ii $) W_{1}(+\infty)=-\infty$
(iii) $W_{2}(0)=0,(i v) W_{2}(+\infty)=+\infty$.

Lemma 2.5. If (2.21) holds, then

$$
\begin{equation*}
W_{1}(x) \leq W_{3}(x) \tag{2.47}
\end{equation*}
$$

where

$$
W_{3}(x):=\frac{1}{I(f)(x)}\left(\frac{L_{M}}{L_{m}}-\frac{L_{m}}{L_{M}} B x^{2}\right)
$$

Proof. From (2.26), we have

$$
\int_{0}^{x} \frac{1}{G(f)(t)} d t \geq \frac{L_{m}}{L_{M}} \frac{x}{I(f)(x)}
$$

and taking into account (2.25), we have that (2.47) holds.
Theorem 2.2. If (2.42) holds, then (2.20) has at least one solution $\eta_{0}<$ $\frac{L_{M}}{L_{m} \sqrt{B}}$. Moreover, if $\beta\left(\frac{L_{M}}{L_{m} \sqrt{B}}\right)<1$, then $\eta_{0} \in \Omega$.
Proof. By Lemma 5, we have that there exists at least one solution η_{0} of (2.46), which verifies $\eta_{0}<x_{0}$ with $W_{1}\left(x_{0}\right)=0$.

Taking into account Lemma 6 , we have that $x_{0}<x_{1}=\frac{L_{M}}{L_{m} \sqrt{B}}$ where x_{1} is the only positive root of $W_{3}(x)$. Then, if $\beta\left(x_{1}\right)<1$, we have $\beta\left(\eta_{0}\right)<1$ and $\eta_{0} \in \Omega$.

Thus, we have the following Theorem:
Theorem 2.3. If N and L verify the conditions (2.21), (2.22), (2.23), (2.42) and $\beta\left(\frac{L_{M}}{L_{m} \sqrt{B}}\right)<1$, then there exists at least one solution of the problem (1.1)-(1.5) where the free boundary $s(t)$ is given by (2.9) and the temperature is given by $T(x, t)=T_{m}+\left(T_{b}-T_{m}\right) f(\eta)$, with $\eta=x / 2 \sqrt{\alpha_{0} t}$ where f is the unique solution of the integral equation (2.15) and η_{0} is given by Theorem 7.

III. Solution of the non-classical free boundary problem with a

 heat flux condition on the fixed face.In this section, we consider the problem (1.1)-(1.5), but condition (1.2) will be replaced by condition (1.7) and the source term is given by (1.8). If we define the following transformation

$$
\begin{equation*}
\theta(x, t)=\frac{T(x, t)-T_{m}}{T_{m}} \quad\left(T(x, t)=T_{m}+T_{m} \theta(x, t)\right), \tag{2.48}
\end{equation*}
$$

then the problem to solve becomes

$$
\begin{gather*}
N(\theta) \theta_{t}=\alpha_{0}\left(L(\theta) \theta_{x}\right)_{x}-\frac{\lambda_{0}}{\rho_{0} c_{0} t}(\theta(0, t)+1), 0<x<s(t) \tag{2.49}\\
k\left(T_{m}(\theta(0, t)+1)\right) \theta_{x}(0, t)=-\frac{q_{0}}{T_{m} \sqrt{t}} \tag{2.50}\\
\theta(s(t), t)=0 \tag{2.51}\\
k\left(T_{m}\right) \theta_{x}(s(t), t)=\frac{-\rho_{0} l s^{\prime}(t)}{T_{m}} \tag{2.52}\\
s(0)=0 . \tag{2.53}
\end{gather*}
$$

Now, we assume a similarity type solution given by (2.8). Then, the free boundary conditions implies that the free boundary $s(t)$ must be of the type (2.9) where η_{0} is a positive parameter to be determined later.

Therefore, the conditions (2.49)-(2.53) reduces to the following problem:

$$
\begin{gather*}
{\left[L(f) f^{\prime}(\eta)\right]^{\prime}+2 \eta N(f) f^{\prime}(\eta)=\frac{4}{\rho_{0} c_{0}} \lambda_{0}(f(0)+1) \quad, 0<\eta<\eta_{0}} \tag{2.54}\\
L(f(0)) f^{\prime}(0)=-q_{0}^{*} \tag{2.55}\\
f\left(\eta_{0}\right)=0 \tag{2.56}\\
f^{\prime}\left(\eta_{0}\right)=-M \eta_{0} \tag{2.57}
\end{gather*}
$$

where

$$
M=\frac{2 \alpha_{0} \rho_{0} l}{k\left(T_{m}\right) T_{m}}, q_{0}^{*}=\frac{2 \sqrt{\alpha_{0}} q_{0}}{k_{0} T_{m}}
$$

and $L(f(0))$ is given by (2.19).
We have that the problem (2.54)-(2.56) is equivalent to the following nonlinear integral equation of Volterra type:

$$
\begin{equation*}
f(\eta)=\chi\left(\eta_{0}, f\right)\left(1+Q \int_{0}^{\eta} \frac{w(f)(t)}{G(f)(t)} d t\right)-\Psi(\eta, f), \eta>\eta_{0} \tag{2.58}
\end{equation*}
$$

where

$$
\begin{gather*}
Q=\frac{4 \lambda_{0}}{\rho_{0} c_{0}} \tag{2.59}\\
\chi\left(\eta_{0}, f\right)=\frac{q_{0}^{*}-M \eta_{0} L(f(0)) G(f)\left(\eta_{0}\right)}{Q L(f(0)) w(f)\left(\eta_{0}\right)} \tag{2.60}
\end{gather*}
$$

and

$$
\begin{equation*}
\Psi(\eta, f)=1+\frac{q_{0}^{*}}{L(f(0))} \int_{0}^{\eta} \frac{1}{G(f)(t)} d t \tag{2.61}
\end{equation*}
$$

the functions $G(f), w(f)$ are defined in (2.17) and (2.18).
The condition (2.57) becomes

$$
\begin{align*}
& Q w(f)\left(\eta_{0}\right)\left(L(f(0))+q_{0}^{*} \int_{0}^{\eta_{0}} \frac{1}{G(f)(t)} d t\right) \tag{2.62}\\
= & \left(q_{0}^{*}-M \eta_{0} L(f(0)) G(f)\left(\eta_{0}\right)\right)\left(1+Q \int_{0}^{\eta_{0}} \frac{w(f)(t)}{G(f)(t)} d t\right) .
\end{align*}
$$

Similarly, as done in Section II, we will obtain some preliminary results to prove the existence of the solution of the system (2.58) and (2.62).

Lemma 2.6. Let η_{0} be a given positive real number. We suppose that the dimensionless thermal conductivity and specific heat verify conditions (2.21), (2.22) and (2.23). Then, for all $f, f^{*} \in C^{0}\left[0, \eta_{0}\right], \forall \eta \in\left(0, \eta_{0}\right)$, we have

$$
\begin{align*}
\left|\chi\left(\eta_{0}, f\right)-\chi\left(\eta_{0}, f^{*}\right)\right| & \leq C_{9}\left\|f^{*}-f\right\| \tag{2.63}\\
\left|\chi\left(\eta_{0}, f^{*}\right)\right| & \leq C_{10} \tag{2.64}\\
\left|\Psi(\eta, f)-\Psi\left(\eta, f^{*}\right)\right| & \leq C_{11}\left\|f^{*}-f\right\| \tag{2.65}
\end{align*}
$$

where

$$
\begin{gathered}
C_{8}=\frac{L_{M}}{L_{m}^{2}}\left[\frac{\widetilde{L}}{L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)+C_{3}\right] \\
C_{9}=\frac{L_{M}^{2}}{L_{m}^{2}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\left\{\frac{q_{0}^{*} \eta_{0}}{L_{m}^{2}}\left(\widetilde{N} L_{M}+N_{M} \widetilde{L}\right)+M \frac{L_{M}^{2}}{L_{m}}\left(\frac{\eta_{0}}{2} C_{3}+L_{M} C_{8}\right)\right\} \\
C_{10}=\frac{L_{M}}{Q L_{m}^{2} \eta_{0}}\left(q_{0}^{*} L_{m}+M \eta_{0} L_{M}^{2} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\right) \\
C_{11}=\frac{q_{0}^{*} \eta_{0} L_{M}^{2}}{L_{m}}\left\{\frac{1}{L_{m}^{4}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\left[\frac{\eta_{0}^{2} L_{M}}{L_{m}^{2}}\left(\widetilde{N} L_{M}+N_{M} \widetilde{L}\right)+2 \widetilde{L}\right]+2 \widetilde{L}\right\} .
\end{gathered}
$$

Proof. Taking into account previous lemmas, we have

$$
\begin{aligned}
& \left|\chi\left(\eta_{0}, f\right)-\chi\left(\eta_{0}, f^{*}\right)\right| \leq \frac{q_{0}^{*}\left|L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right)-L(f(0)) w(f)\left(\eta_{0}\right)\right|}{L(f(0)) w(f)\left(\eta_{0}\right) L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right)} \\
& +\frac{M \eta_{0}\left|L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right) L(f(0)) G(f)\left(\eta_{0}\right)-L(f(0)) w(f)\left(\eta_{0}\right) L\left(f^{*}(0)\right) G\left(f^{*}\right)\left(\eta_{0}\right)\right|}{L(f(0)) w(f)\left(\eta_{0}\right) L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right)} \\
& \leq \frac{q_{0}^{*} L_{M}^{2}}{\eta_{0}^{2} L_{m}^{2}}\left|L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right)-L(f(0)) w(f)\left(\eta_{0}\right)\right| \\
& +\frac{M L^{4}}{\eta_{0} L_{m}^{M}}\left|w\left(f^{*}\right)\left(\eta_{0}\right) G(f)\left(\eta_{0}\right)-w(f)\left(\eta_{0}\right) G\left(f^{*}\right)\left(\eta_{0}\right)\right| \\
& \leq \frac{q_{0}^{*} L_{M}^{2}}{\eta_{0}^{2} L_{m}^{2}} \int_{0}^{\eta_{0}}\left|I(f)(t)-I\left(f^{*}\right)(t)\right| d t \\
& +\frac{M L_{M}^{4}}{\eta_{0} L_{m}^{2}}\left[\left|w\left(f^{*}\right)\left(\eta_{0}\right)\right|\left|G(f)\left(\eta_{0}\right)-G\left(f^{*}\right)\left(\eta_{0}\right)\right|+G(f)\left(\eta_{0}\right)\left|w\left(f^{*}\right)\left(\eta_{0}\right)-w(f)\left(\eta_{0}\right)\right|\right] \\
& \leq\left\{\frac{q_{0}^{2} L_{M a}^{2}}{O_{0} L_{m}^{2}} C_{1}+\frac{M L_{M}^{4}}{\eta_{0} L_{m}^{2}}\left[\frac{\eta_{0}^{2}}{2 L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) C_{3}+\frac{L_{M}}{L_{m}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right) C_{5}\right]\right\}\left\|f^{*}-f\right\| \\
& =C_{9}\left\|f^{*}-f\right\| .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\left|\chi\left(\eta_{0}, f^{*}\right)\right| & \leq\left|\frac{q_{0}^{*}-M \eta_{0} L\left(f^{*}(0)\right) G\left(f^{*}\right)\left(\eta_{0}\right)}{Q L\left(f^{*}(0)\right) w\left(f^{*}\right)\left(\eta_{0}\right)}\right| \\
& \leq L_{M} \frac{q_{0}^{*}+M \eta_{0} L_{M}^{2} / L_{m} \exp \left(N_{M} \eta_{0}^{2} / L_{m}\right)}{Q L_{m} \eta_{0}}=C_{10} .
\end{aligned}
$$

Finally, by (2.16), we have

$$
\begin{aligned}
& \left|\Psi(\eta, f)-\Psi\left(\eta, f^{*}\right)\right|=\left|\frac{q_{0}^{*}}{L(f(0))} \int_{0}^{\eta} \frac{1}{G(f)(t)} d t-\frac{q_{0}^{*}}{L\left(f^{*}(0)\right)} \int_{0}^{\eta} \frac{1}{G\left(f^{*}\right)(t)} d t\right| \\
& \leq \frac{q_{0}^{*}}{L(f(0))} \int_{0}^{\eta}\left|\frac{1}{G(f)(t)}-\frac{1}{G\left(f^{*}\right)(t)}\right| d t \\
& \quad+q_{0}^{*}\left|\frac{1}{L(f(0))}-\frac{1}{L\left(f^{*}(0)\right)}\right| \int_{0}^{\eta} \frac{1}{G\left(f^{*}\right)(t)} d t \\
& =\frac{q_{0}^{*}}{L(f(0))} \int_{0}^{\eta}\left|\frac{G(f)(t)-G\left(f^{*}\right)(t)}{G(f)(t) G\left(f^{*}\right)(t)}\right| d t \\
& \quad+q_{0}^{*}\left|\frac{L\left(f^{*}(0)\right)-L(f(0)}{L(f(0)) L\left(f^{*}(0)\right)}\right| \int_{0}^{\eta} \frac{1}{G\left(f^{*}\right)(t)} d t .
\end{aligned}
$$

Taking into account (2.22), (2.26) and (2.33), we have

$$
\left|\Psi(\eta, f)-\Psi\left(\eta, f^{*}\right)\right| \leq\left\{\frac{q_{0}^{*}}{L_{m}} \eta_{0} C_{4}+\frac{q_{0}^{*} \widetilde{L}}{L_{m}^{2}} \frac{L_{M}}{L_{m}} \eta_{0}\right\}\left\|f^{*}-f\right\|=C_{11}\left\|f^{*}-f\right\| .
$$

Theorem 2.4. Let η_{0} be a given positive real number. We suppose that (2.21), (2.22), and (2.23) hold. If η_{0} satisfies the inequality

$$
\begin{equation*}
\varepsilon\left(\eta_{0}\right):=C_{9}\left(1+Q \frac{\eta_{0}^{3} L_{M}}{2 L_{m}^{2}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\right)+C_{10} Q \eta_{0} C_{6}+C_{11}<1, \tag{2.66}
\end{equation*}
$$

then there exists a unique solution of the integral equation (2.58).
Proof. Let $U: C^{0}\left[0, \eta_{0}\right] \longrightarrow C^{0}\left[0, \eta_{0}\right]$ be the operator defined by

$$
\begin{equation*}
U(f)_{(\eta)}=\chi\left(\eta_{0}, f\right)\left(1+Q \int_{0}^{\eta} \frac{w(f)(t)}{G(f)(t)} d t\right)-\Psi(\eta, f) \tag{2.67}
\end{equation*}
$$

$f \in C^{0}\left[0, \eta_{0}\right], 0<\eta<\eta_{0}$. The solution of the equation (2.58) is the fixed point of the operator U, that is,

$$
\begin{equation*}
U(f(\eta))=f(\eta) \quad, \quad 0<\eta<\eta_{0} \tag{2.68}
\end{equation*}
$$

We note that the nonlinear operator W is, in fact, self mapping on $C^{0}\left[0, \eta_{0}\right]$ by the assumptions on the thermal coefficients.

Let $f, f^{*} \in C^{0}\left[0, \eta_{0}\right]$. Then, we obtain

$$
\begin{aligned}
& \left|U(f)-U\left(f^{*}\right)\right| \leq \left\lvert\, \chi\left(\eta_{0}, f\right)\left(1+Q \int_{0}^{\eta} \frac{w(f)(t)}{G(f)(t)} d t\right)\right. \\
& \quad-\chi\left(\eta_{0}, f^{*}\right)\left(1+Q \int_{0}^{\eta} \frac{w\left(f^{*}\right)(t)}{G\left(f^{*}\right)(t)} d t\right)\left|+\left|\Psi(\eta, f)-\Psi\left(\eta, f^{*}\right)\right|\right. \\
& \leq\left|\chi\left(\eta_{0}, f\right)-\chi\left(\eta_{0}, f^{*}\right)\right|\left(1+Q \int_{0}^{\eta} \frac{w(f)(t)}{G(f)(t)} d t\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Pladriana C. Briozzo año Marîa férinanda iNatale } \\
+\left|\chi\left(\eta_{0}, f^{*}\right)\right| Q \int_{0}^{\eta}\left|\frac{w(f)(t)}{G(f)(t)}-\frac{P^{w}\left(f^{*}\right)(t)}{G\left(f^{*}\right)(t)}\right| d t+\left|\Psi(\eta, f)-\Psi\left(\eta, f^{*}\right)\right| .
\end{gathered}
$$

Then, taking into account Lemmas 1,3 , and 9 , we obtain

$$
\begin{aligned}
& \left|U(f)-U\left(f^{*}\right)\right| \\
& \leq\left\{C_{9}\left(1+Q \frac{\eta_{0}^{3} L_{M}}{2 L_{m}^{2}} \exp \left(\frac{N_{M}}{L_{m}} \eta_{0}^{2}\right)\right)+C_{10} Q \eta_{0} C_{6}+C_{11}\right\}\left\|f^{*}-f\right\|
\end{aligned}
$$

Finally, we have

$$
\left\|U(f)-U\left(f^{*}\right)\right\| \leq \varepsilon\left(\eta_{0}\right)\left\|f^{*}-f\right\| .
$$

Then, there exists a unique solution of the integral Eq.(2.58) if condition (2.66) is verified. (i.e., U is a contraction operator).

Let Σ be the set defined by
$\Sigma=\left\{\eta_{0} \in R^{+} / \varepsilon\left(\eta_{0}\right)<1\right\}=\left\{\eta_{0} \in R^{+} /\right.$there exists a solution of (2.58) $\}$.
Lemma 2.7. Function $\varepsilon=\varepsilon(\eta)$ given by (2.66), satisfies the following properties:
(i) $\varepsilon(0)=\frac{L_{M}^{6}}{L_{m}^{6}} M \widetilde{L}\left(1+2 \frac{L_{M}}{L_{m}}\right),(i i) \varepsilon(+\infty)=+\infty$,
(iii) ε is an increasing function
(iv) If

$$
\begin{equation*}
\frac{L_{M}^{6}}{L_{m}^{6}} M \widetilde{L}\left(1+2 \frac{L_{M}}{L_{m}}\right)<1 \tag{2.69}
\end{equation*}
$$

then there exists $\widetilde{\eta}>0$ such that $\varepsilon(\eta)<1$ for all $\eta \in(0, \widetilde{\eta})$.
Next, we prove that the equation (2.62) has a unique solution. For this, we define for $x \in \Sigma$ the following functions:

$$
\begin{equation*}
V_{1}(x):=\left(q_{0}^{*}-M x L(f(0)) G(f)(x)\right)\left(1+Q \int_{0}^{x} \frac{w(f)(t)}{G(f)(t)} d t\right) \tag{2.70}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}(x):=Q w(f)(x)\left(L(f(0))+q_{0}^{*} \int_{0}^{x} \frac{1}{G(f)(t)} d t\right) \tag{2.71}
\end{equation*}
$$

We have:
Lemma 2.8. The functions V_{1} and V_{2} satisfy the following properties:
(i) $V_{1}(0)=q_{0}^{*}, V_{1}(+\infty)=-\infty$,
(ii) $V_{2}(0)=0, V_{2}(+\infty)=+\infty$ and $V_{2}(x) \geq 0$ for all $x>0$.

Theorem 2.5. If (2.69) holds, then (2.62) has at least one solution η_{0}. Moreover, if $\varepsilon\left(\frac{q_{0}^{*}}{M L_{m}}\right)<1$, then $\varepsilon\left(\eta_{0}\right)<1$.

Proof. By the above Lemma, there exists at least one solution η_{0} of (2.62) and it is satisfied $V_{1}\left(\eta_{0}\right)=V_{2}\left(\eta_{0}\right)>0$. Let $x_{0}=\min \left\{x>0 / V_{1}(x)=\right.$ $0\}=\min \left\{x>0 / q_{0}^{*}-M x L(f(0)) G(f)(x)=0\right\}=\min \left\{x>0 / q_{0}^{*}=\right.$ $M x L(f(x)) I(f)(x)\}$.

By properties of $L(f)$ and $I(f)$, we have $\eta_{0}<x_{0} \leq \frac{q_{0}^{*}}{M L_{m}}$. Then, if $\varepsilon\left(\frac{q_{0}^{*}}{M L_{m}}\right)<1$, we have $\varepsilon\left(\eta_{0}\right)<1$.
Theorem 2.6. If N and L verify the conditions (2.21), (2.22), (2.23), (2.69) and $\varepsilon\left(\frac{q_{0}^{*}}{M L_{m}}\right)<1$, then the non-classical free boundary problem (1.1), (1.3)(1.5), (1.7), and (1.8) has a unique solution given by (2.9) and $T(x, t)=$ $T_{m}+T_{m} f(\eta), \eta=x /\left(2 \sqrt{\alpha_{0} t}\right)$ where the function $f=f(\eta)$ is the unique solution of (2.58) and the coefficient $\eta_{0}>0$ is given by Theorem 13.

Remark 2.2. In this paper, we have generalized the non-classical Stefan problems raised in [7] with the constant thermal coefficients and a source term given by (1.6) or (1.8). Moreover, if we consider null source term in the nonlinear Stefan problem (1.1)-(1.5) and in the nonlinear Stefan problem (1.1), (1.3)-(1.5), (1.7), we obtain the same solution given by [4].
Acknowledgments. This paper has been partially sponsored by the projects PIP No. 112-200801-00460 from CONICET-UA, Rosario
(Argentina), ANPCYT PICTO 2008-00073 from Agencia (Argentina) and "Fondo de ayuda a la investigación" from Universidad Austral (Argentina).

References

[1] V. Alexiades and D. Solomon, "Mathematical Modeling of Melting and Frezzing Processes," Hemisphere-Taylor\&Francis, Washington DC, USA, 1983.
[2] J.R. Barber, An asymptotic solution for short-time transient heat conduction between two similar contacting bodies, Int. J. Heat Mass Transfer, 32 (1989), 943-949.
[3] L.R. Berrone, D.A. Tarzia, and L.T. Villa, Asymptotic behaviour of a non-classical heat conduction problem for a semi-infinite material, Mathematical Methods in the Applied Sciences, 23 (2000), 1161-1177.
[4] A.C. Briozzo, M.F. Natale, and D.A. Tarzia, Existence for an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii's method, Nonlinear Analysis, 67 (2007), 1989-1998.
[5] A.C. Briozzo and D.A. Tarzia, Existence and uniqueness for a one-phase Stefan problems of non-classical heat equations with temperature boundary condition at a fixed face, Electronical Journal of Differential Equations, 2006 (2006), 1-16.
[6] A.C. Briozzo and D.A. Tarzia, A one phase Stefan problem for a non-classical heat equation with a heat flux condition on the fixed face, Applied Mathematics and Computation, 182 (2006), 809-819.
[7] A.C. Briozzo and D.A. Tarzia, Exact solutions for non-classical Stefan problems, Inter. J. Differential Equations, 2010, Article ID 868059, 19 pages. doi:10.1155/2010/868059.
[8] J.R. Cannon, "The One-Dimensional Heat Equation," Menlo Park, CA, AddisonWesley, 1984.
[9] J.R. Cannon and H.M. Yin, A class of nonlinear non-classical parabolic equations, J. Differential Equations, 79 (1989), 266-288.
[10] M.N. Coelho Pinheiro, Liquid phase mass transfer coefficients for bubbles growing in a pressure field: A simplified analysis, Int. Comm. Heat Mass Transfer, 27 (2000), 99-108.
[11] J. Crank, "Free and Moving Boundary Problems," Oxford, Clarendon, 1984.
[12] A. Fasano, "Mathematical Models of Some Diffusive Processes with Free Boundaries," Vol. 11 of MAT serie A: Conferencias, Seminarios y Trabajos de Matemática, 2005.
[13] K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equation arising in the theory of termostats, SIAM J. Math. Anal., 12 (1981), 477-486.
[14] K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and setvalued integral equations, J. Integral Equations, 4 (1982), 95-112.
[15] N. Kenmochi, Heat conduction with a class of automatic heat source controls, Free Boundary problems: Theory and Applications, Pitman Research Notes in Mathematics Series, Vol. 186 (1990), 471-474.
[16] N. Kenmochi and M. Primicerio, One-dimensional heat conduction with a class of automatic heat-source controls, IMA J. Applied Mathematics, 40 (1988), 205-216.
[17] V. Lunardini, "Heat transfer with Freezing and Thawing," Elsevier Amsterdan, The Netherlands, 1991.
[18] A.D. Polyanin and V.V. Dil'man, The method of the 'carry over' of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33 (1990), 175-181.
[19] D.A. Tarzia, An inequality for the coefficient σ of the free boundary $s(t)=2 \sigma \sqrt{t}$ of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39 (1981), 491-497.
[20] D.A. Tarzia and L. T. Villa, Some nonlinear heat conduction problems for a semiinfinite strip with a non-uniform heat source, Revista de la Unión Matemática Argentina, 41 (1998), 99-114.
[21] G.A. Tirskii, Two exact solutions of Stefan's nonlinear problem, Soviet Physics Doklady, 4 (1959), 288-292.
[22] L.T. Villa, Problemas de control para una ecuación unidimensional del calor, Revista de la Unión Matemática Argentina, 32 (1986), 163-169.

[^0]: AMS Subject Classifications: 35R35, 80A22, 45G10.
 Accepted for publication: July 2014.

