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Abstract. The mathematical analysis of two one-phase unidimensional
and non-classical Stefan problems with nonlinear thermal coefficients is
obtained. Two related cases are considered, one of them has a tem-
perature condition on the fixed face x = 0 and the other one has a flux
condition of the type −q0/

√
t (q0 > 0) . In the first case, the source func-

tion depends on the heat flux at the fixed face x = 0, and in the other
case it depends on the temperature at the fixed face x = 0. In both
cases, we obtain sufficient conditions in order to have the existence of
an explicit solution of a similarity type, which is given by using a double
fixed point.

1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free bound-
ary problem for the classical heat equation, which requires the determination
of the temperature distribution T of the liquid phase (melting problem) or
the solid phase (solidification problem) and the evolution of the free bound-
ary x = s(t). Phase change problems appear frequently in industrial pro-
cesses and other problems of technological interest [1, 11, 12, 17].

The Lamé-Clapeyron-Stefan problem is nonlinear even in its simplest form
due to the free boundary conditions. If the thermal coefficients of the mate-
rial are temperature-dependent, we have a doubly nonlinear free boundary
problem.

The present study provides the existence of solutions of the similarity type
to two nonlinear one-phase melting problems for non-classical heat equations.
First, we consider the following non-classical free boundary problem for a
semi-infinite material [4, 7, 8, 11]:

ρ(T )c(T )Tt = (k(T )Tx)x − F (W (t), t) , 0 < x < s(t), t > 0 (1.1)
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T (0, t) = Tb (1.2)

T (s(t), t) = Tm (1.3)

k (T (s(t), t))Tx(s(t), t) = −ρ0 l
•
s (t) (1.4)

s(0) = 0, (1.5)

where T = T (x, t) is the temperature of the liquid phase; ρ(T ), c(T ) and
k(T ) are the body’s density, its specific heat, and its thermal conductivity,
respectively; Tm is the phase-change temperature, Tb > Tm is the tempera-
ture on the fixed face x = 0; ρ0 > 0 is its constant density of mass at the
melting temperature; l > 0 is the latent heat of fusion by unity of mass, and
s(t) is the position of phase change location. We assume that ρ(T ), c(T ) and
k(T ) are continuous functions of the temperature and k(T ) ≥ k∗ > 0. The
control function F depends on the evolution of the heat flux at the boundary
x = 0 as follows

W (t) = Tx(0, t) , F (W (t), t) = F (Tx(0, t), t) = λ0√
t
Tx(0, t) (1.6)

where λ0 is a given positive constant.
Then, we consider an analogous problem (1.1), (1.3)-(1.5) and the tem-

perature condition (1.2) will be replaced by the following flux condition

k(T (0, t))Tx(0, t) = −q0/
√
t (1.7)

at the fixed face x = 0 where q0 is a positive constant. In this case, the control
function F depends on the evolution of the temperature at the boundary
x = 0 as follows

W (t) = T (0, t) , F (W (t), t) = F (T (0, t), t) = λ0
t T (0, t), (λ0 > 0) . (1.8)

Here, −q0/
√
t denotes the prescribed flux on the boundary x = 0, which is

of the type imposed in [19]. Furthermore, this kind of heat flux on the fixed
boundary was also considered in several applied problems, e.g. [2, 10, 18].

The non-classical heat conduction problem for a semi-infinite material was
studied in [3, 9, 13, 16, 20, 22]. A problem of this type is the following:

Tt − Txx = −F (W (t), t) , x > 0, t > 0 (1.9)

T (0, t) = f(t), t > 0 T (x, 0) = h(x), x > 0

where functions f = f(t) and h = h(x) are continuous real functions, and F
is a given function of two variables. A particular and interesting case is the
following:

F (W (t), t) = λ0√
t
W (t), (λ0 > 0), (1.10)
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where W (t) represents the heat flux on the boundary x = 0, that is, W (t) =
Tx(0, t). Problems of the type (1.9) and (1.10) can be thought of by mod-
elling of a system of temperature regulation in isotropic mediums [20, 22]
with nonuniform source term, which provides a cooling or heating effect de-
pending upon the properties of F related to the course of the heat flux (or
the temperature in other cases) at the boundary x = 0 [20].

In the particular case of a bounded domain, a class of problems, when the
heat source is uniform and belongs to a given multivalued function from R
into itself was studied in [16] regarding existence, uniqueness and asymptotic
behavior. Moreover, in [3], conditions are given on the nonlinearity of the
source term F so as to accelerate the convergence of the solution to the
steady-state solution. Other references on the subject are in [13, 14, 15].

Non-classical free boundary problems of the Stefan type were studied in
[5, 6] from a theoretical point of view by using an equivalent formulation
through a system of second kind Volterra integral equations. In [7], the
one-phase unidimensional Stefan problems for non-classical heat equations
with constants thermal coefficients and a source function F given by (1.6)
or (1.8) were considered. Exact solutions of a similarity type were obtained
in all cases.

The problem (1.1)-(1.5) with null source term was firstly considered in [21]
where an equivalent integral equation was obtained, however, any mathemat-
ical result is given in [21]. In [4], the existence of an explicit solution of a
similarity type by using a double fixed point was given.

The plan of the paper is the following: In Section II, we prove the existence
of at least one explicit solution of a similarity type for the problem (1.1)-
(1.5) and the control function given by (1.6) by using a double fixed point
for the integral equation (2.15) and the transcendental equation (2.20) under
certain hypothesis for data.

In Section III, we consider the analogous problem (1.1), (1.3)–(1.5), (1.7)
and a control function given by (1.8). We prove the existence of at least
one explicit solution of a similarly type by using a double fixed point for
the integral equation (2.58) and the transcendental equation (2.62) under
certain hypothesis for data.

2. The one-phase non-classical Stefan problem with nonlinear
thermal coefficients with temperature boundary condition

on the fixed face

If we define the following transformation [4, 21]

θ(x, t) = T (x,t)−Tm
Tb−Tm , (2.1)
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then the problem (1.1)-(1.5) becomes

N(θ)θt = α0(L(θ)θx)x − F ((Tb−Tm)θx(0,t),t)
c0ρ0(Tb−Tm) , 0 < x < s(t), t > 0 (2.2)

θ(0, t) = 1, t > 0 (2.3)

θ(s(t), t) = 0, t > 0 (2.4)

k(Tm)θx(s(t), t) =
−ρ0 l
Tb − Tm

•
s (t), t > 0 (2.5)

s(0) = 0, (2.6)

where

N(T ) = ρ(T )c(T )
ρ0c0

, L(T ) = k(T )
k0

(2.7)

and k0, ρ0, c0 and α0 = k0
ρ0c0

are the reference thermal conductivity, density

of mass, specific heat and thermal diffusive, respectively.
Now we assume a similarity solution of the type

θ(x, t) = f(η), η = x
2
√
α0t

. (2.8)

The free boundary conditions implies that the free boundary s(t) must be
of the type

s(t) = 2η0
√
α0t (2.9)

where η0 is a positive parameter to be determined later.
Therefore, the conditions (2.2)-(2.5) is reduced to the following problem:[

L(f)f ′(η)
]′

+ 2ηN(f)f ′(η) = Af ′(0), 0 < η < η0 (2.10)

f(0) = 1 (2.11)

f(η0) = 0 (2.12)

f ′(η0) = −Bη0, (2.13)

where

A = 2λ0
c0ρ0
√
α0
, B = 2α0ρ0l

k(Tm)(Tb−Tm) . (2.14)

We have that the problem 2.10)-(2.12) is equivalent to the following nonlinear
integral equation of Volterra type:

f(η) = 1− Φ [η, L(f), N(f)]

Φ [η0, L(f), N(f)]
, (2.15)

where Φ is given by

Φ [η, L(f), N(f)] :=

∫ η

0

1

G(f)(t)
dt+A

∫ η

0

w(f)(t)

G(f)(t)
dt, (2.16)



Please DO NOT distribute
Khayyam Publishing

Two Stefan problems for a non-classical heat equation 1191

and

G(f)(x) :=
L(f(x))

L(f(0))
I(f)(x) , I(f)(x) := exp

(
2

∫ x

0
sN(f(s))
L(f(s)) ds

)
, (2.17)

w(f)(x) :=

∫ x

0

G(f)(t)

L(f)(t)
dt =

1

L(f(0))

∫ x

0
I(f)(t)dt (2.18)

with

L(f(0)) = L(Tm(f(0) + 1)) =
k (Tm(f(0) + 1))

k0
. (2.19)

The condition (2.13) becomes

A

∫ η

0

G(f)(t)

L(f)(t)
dt+ 1 = Bη0G(f)(η0)Φ [η0, L(f), N(f)] . (2.20)

First, in order to prove the existence of the solution of the system (2.15) and
(2.20), we will obtain some preliminary results following [4, 21]. Then, we
shall prove that the integral equation (2.15) has a unique solution for any
given η0 > 0 by using a fixed point theorem. Secondly, we shall consider
(2.20).

For convenience of notation, we will note Φ[η, f ] ≡ Φ[η, L(f), N(f)]. We
suppose that there exist Nm, NM , Lm, LM positive constants such as

Lm ≤ L(T ) ≤ LM , Nm ≤ N(T ) ≤ NM . (2.21)

Furthermore, we assume that the dimensionless thermal conductivity and

specific heat are Lipschitz functions, i.e., there exist positive constants L̃

and Ñ such that

|L(g)− L(h)| ≤ L̃ ‖g − h‖ , ∀g, h ∈ C0
(
R+

0

)
∩ L∞

(
R+

0

)
(2.22)

|N(g)−N(h)| ≤ Ñ ‖g − h‖ , ∀g, h ∈ C0
(
R+

0

)
∩ L∞

(
R+

0

)
. (2.23)

Then, we get:

Lemma 2.1. For 0 < η < η0, we have

exp
(Nmη

2

LM

)
≤ I(f)(η) ≤ exp

(NMη
2

Lm

)
(2.24)

Lm
LM
≤ G(f)(η) ≤ LM

Lm
exp

(NM

Lm
η20

)
(2.25)

η0
Lm
LM

exp
(
− NM

Lm
η20

)
≤
∫ η

0

1

G(f)(t)
dt ≤ LM

Lm
η0 (2.26)

η0
LM
≤ w(f)(η) ≤ η20

2Lm
exp

(NM

Lm
η20

)
(2.27)



Please DO NOT distribute
Khayyam Publishing

1192 Adriana C. Briozzo and Maŕıa Fernanda Natale∫ η

0

w(f)(t)

G(f)(t)
dt ≤ η30LM

2L2
m

exp
(NM

Lm
η20

)
(2.28)

Lm
LM

η0 exp
(
− NM

Lm
η20

)
≤ Φ[η, f ] ≤ LM

Lm
η0 +A

η30LM
2L2

m

exp
(NM

Lm
η20

)
. (2.29)

We consider C0[0, η0], the space of continuous real functions defined on
[0, η0] with its norm ‖f‖ = maxη∈[0,η0] |f(η)|.

Lemma 2.2. Let η0 be a given positive real number. For all f, f∗ ∈
C0 [0, η0] , ∀η ∈ (0, η0), we have

|I (f) (η)− I(f∗)(η)| ≤ C1 ‖f∗ − f‖ (2.30)

|L (f(η))L(f∗(0))− L (f∗(η))L(f(0))| ≤ C2 ‖f∗ − f‖ (2.31)

|G (f) (η)−G(f∗)(η)| ≤ C3 ‖f∗ − f‖ (2.32)∣∣∣ ∫ η

0

( 1

G(f)(t)
− 1

G(f∗)(t)

)
dt
∣∣∣ ≤ η0C4 ‖f∗ − f‖ (2.33)

|w (f) (η)− w(f∗)(η)| ≤ C5 ‖f∗ − f‖ (2.34)∣∣∣ ∫ η

0

(w(f)(t)

G(f)(t)
− w(f∗)(t)

G(f∗)(t)

)
dt
∣∣∣ ≤ η0C6 ‖f∗ − f‖ (2.35)

|Φ [η, f ]− Φ [η, f∗]| ≤ η0C7 ‖f∗ − f‖ , (2.36)

where

C1 = exp
(
NM
Lm

η20

) η20
L2
m

(
ÑLM +NM L̃

)
, C2 = 2LM L̃

C3 =
L2
MC1 + C2 exp(

NMη20
Lm

)

L2
m

, C4 =
L2
M

L2
m

C3

C5 = η0
LM
L2
m

[ L̃
Lm

exp
(
NM
Lm

η20
)

+ C3

]
C6 = exp

(
NM
Lm

η20

)
L2
M
L3
m

[η20
2
C3 + LMC5

]
, C7 = C4 +AC6.

Proof. By using the mean value theorem and (2.21), (2.22), (2.23), we have

|I(f)(η)− I(f∗)(η)|=
∣∣∣ exp

(
2

∫ η

0
u
N(f(u))

L(f(u))
du
)
− exp

(
2

∫ η

0
u
N(f∗(u))

L(f∗(u))
du
)∣∣∣

≤ exp(NM
Lm

η20)

∫ η

0
2u
∣∣∣N(f(u))

L(f(u))
− N(f∗(u))

L(f∗(u))

∣∣∣ du
≤ exp(NM

Lm
η20)

∫ η

0

2u

L(f(u))L(f∗(u)
|L(f∗(u))||N(f(u))−N(f∗(u))|
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+ |N(f∗(u))||L(f(u))− L(f∗(u))| du

≤ exp
(
NM
Lm

η20

) η20
L2
m

(
ÑLM +NM L̃

)
‖f∗ − f‖ = C1 ‖f∗ − f‖ .

Taking into account (2.21), (2.22), (2.23), it is easy to see (2.31).
From (2.17), we have

|G(f)(η)−G(f∗)(η)|

=
|L(f(u))L(f∗(0))I (f) (η)− L(f∗(u))L(f(0))I(f∗)(η)|

L(f∗(0))L(f(0))

≤ 1

L(f∗(0))L(f(0))

[
L(f(u))L(f∗(0)) |I (f) (η)− I(f∗)(η)|

+ |L (f(η))L(f∗(0))− L (f∗(η))L(f(0))| I(f∗)(η)

≤
L2
MC1 ‖f∗ − f‖+ C2 ‖f∗ − f‖ exp (NMx2

Lm
)

L2
m

×
L2
MC1 + C2 exp(NMx2

Lm
)

L2
m

‖f∗ − f‖ = C3 ‖f∗ − f‖ .

From the above inequality and Lemma 1, we have∣∣∣ ∫ η

0

( 1

G(f)(t)
− 1

G(f∗)(t)

)
dt
∣∣∣ ≤ ∫ η

0

|G (f) (t)−G(f∗)(t)|
G(f)(t) G(f∗)(t)

dt

≤
L2
M

L2
m

η0C3 ‖f∗ − f‖ .

To prove (2.34), we write

|w (f) (η)− w(f∗)(η)| ≤
∫ η

0

∣∣∣G(f)(t)

L (f(t))
− G(f∗)(t)

L (f∗(t))

∣∣∣ dt
≤
∫ η

0

G(f)(t) |L (f(η))− L (f∗(η))|+ L (f(t)) |G (f) (t)−G(f∗)(t)|
L (f(t)) L (f∗(t))

dt

≤ η0
L2
m

[
L̃ ‖f − f∗‖ LM

Lm
exp

(
t
NM

Lm
η20

)
+ LMC3 ‖f∗ − f‖

]
= C5 ‖f∗ − f‖ .

Thus, we have∣∣∣ ∫ η

0

(w(f)(t)

G(f)(t)
− w(f∗)(t)

G(f∗)(t)

)
dt
∣∣∣

≤
∫ η

0

w(f)(t) |G (f) (t)−G(f∗)(t)|+G (f(t)) |w (f) (t)− w(f∗)(t)|
G (f(t)) G (f∗(t))

dt
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≤
η0L

2
M

L2
m

[ η20
2Lm

exp
(
NM
Lm

η20

)
C3 ‖f∗ − f‖+ LM

Lm
exp

(
NM
Lm

η20

)
C5 ‖f∗ − f‖

]
=
η0L

2
M

L3
m

exp
(
NM
Lm

η20

) [
η20
2 C3 + LMC5

]
‖f∗ − f‖ = η0C6 ‖f∗ − f‖ .

Finally, taking into account (2.16), (2.33) and (2.35), it is easy to see that
(2.36) holds. �

Theorem 2.1. Let η0 be a given positive real number. We suppose that
(2.21), (2.22), and (2.23) hold. If η0 satisfies the inequality

β(η0) :=
2L3

M
L3
m

exp2
(
NM
Lm

η20

) [
1 +A

η20
2Lm

exp
(
NM
Lm

η20

)]
C7 < 1, (2.37)

then there exists a unique solution f ∈ C0[0, η0] of the integral equation
(2.15).

Proof. Let W : C0[0, η0] −→ C0[0, η0] be the operator defined by

W (f)(η) = 1− Φ [η, f ]

Φ [η0, f ]
, f ∈ C0[0, η0]. (2.38)

The solution of the equation (2.15) is the fixed point of the operator W, that
is,

W (f(η)) = f(η) , 0 < η < η0. (2.39)

We note that the nonlinear operator W is, in fact, self mapping on
C0 [0, η0] by the assumptions on the thermal coefficients.

Let f, f∗ ∈ C0[0, η0], then we obtain

‖W (f)−W (f∗)‖ = Max
η∈[0,η0]

|W (f(η))−W (f∗(η))|

Max
η∈[0,η0]

≤
∣∣∣∣Φ [η, f∗] Φ [η0, f ]− Φ [η0, f

∗] Φ [η, f ]

Φ [η0, f ] Φ [η0, f∗]

∣∣∣∣
≤ R Max

η∈[0,η0]
|Φ [η, f∗] Φ [η0, f ]− Φ [η0, f

∗] Φ [η, f ]|

≤ R Max
η∈[0,η0]

(|Φ[η, f∗]||Φ[η0, f ]− Φ[η0, f
∗]|+ |Φ[η0, f

∗]||Φ[η, f∗]− Φ[η, f ]|),

where
R =

L2
M

L2
mη

2
0

exp2
(
NM
Lm

η20

)
> 0. (2.40)

Finally, from Lemmas 1 and 2 and taking into account that 0 < η < η0, we
have

‖W (f)−W (f∗)‖ ≤ β (η0) ‖f∗ − f‖ .
Then, W is a contraction operator; therefore, there exists a unique solution
of (2.15) if the condition (2.37) is satisfied. �
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Remark 2.1. The solution f of the integral equation (2.15), given by the
Theorem 3, depends on the real number η0 > 0. For convenience in the
notation from now on, we take

f(η) = fη0(η) = f(η0, η) , 0 < η < η0 , η0 > 0. (2.41)

Let Ω be the set defined by

Ω = {η0 ∈ R+/β(η0) < 1} = {η0 ∈ R+/there exists a solution of (2.15)}.

Lemma 2.3. If

4L5
M L̃

/
L7
m < 1, (2.42)

then there exists a positive number η∗0 such that

β(η0) < 1 if 0 < η0 < η∗0 , β(η0) ≥ 1 if η0 ≥ η∗0.

Proof. We have β(0) = 4L5
M L̃

/
L7
m , β(+∞) = +∞ and β′(η0) > 0 ∀η0 > 0.

Then, Ω = (0, η∗0) where β(η∗0) = 1. �

To prove the existence of the solution of (2.20), we rewrite it as follows

1

G(f)(x)
−Bx

∫ x

0

1

G(f)(t)
dt=ABx

∫ x

0

w(f)(t)

G(f)(t)
dt− A

G(f)(x)

∫ x

0

G(f)(t)

L(f)(t)
dt

(2.43)
where f is the solution of (2.15) given by Theorem 3.

We define the functions

W1(x) :=
1

G(f)(x)
−Bx

∫ x

0

1

G(f)(t)
dt, (2.44)

W2(x) := ABx

∫ x

0

w (f) (t)

G(f)(t)
dt− A

G(f)(x)

∫ x

0

G(f)(t)

L(f)(t)
dt. (2.45)

Thus, the equation (2.43) is equivalent to

W1(x) = W2(x) (2.46)

Lemma 2.4. The functions W1 and W2 satisfy the following properties
(i) W1(0) = 1 , (ii) W1(+∞) = −∞
(iii) W2(0) = 0 , (iv) W2(+∞) = +∞.

Lemma 2.5. If (2.21) holds, then

W1(x) ≤W3(x) (2.47)

where

W3(x) :=
1

I(f)(x)

(
LM
Lm
− Lm

LM
Bx2

)



Please DO NOT distribute
Khayyam Publishing

1196 Adriana C. Briozzo and Maŕıa Fernanda Natale

Proof. From (2.26), we have∫ x

0

1

G(f)(t)
dt ≥ Lm

LM

x

I(f)(x)

and taking into account (2.25), we have that (2.47) holds.

Theorem 2.2. If (2.42) holds, then (2.20) has at least one solution η0 <
LM

Lm

√
B
. Moreover, if β( LM

Lm

√
B

) < 1, then η0 ∈ Ω.

Proof. By Lemma 5, we have that there exists at least one solution η0 of
(2.46), which verifies η0 < x0 with W1(x0) = 0.

Taking into account Lemma 6, we have that x0 < x1 = LM

Lm

√
B

where x1 is

the only positive root of W3(x). Then, if β(x1) < 1, we have β(η0) < 1 and
η0 ∈ Ω. �

Thus, we have the following Theorem:

Theorem 2.3. If N and L verify the conditions (2.21), (2.22), (2.23), (2.42)

and β( LM

Lm

√
B

) < 1, then there exists at least one solution of the problem

(1.1)-(1.5) where the free boundary s(t) is given by (2.9) and the temperature
is given by T (x, t) = Tm + (Tb − Tm)f(η), with η = x/2

√
α0t where f is the

unique solution of the integral equation (2.15) and η0 is given by Theorem 7.

III. Solution of the non-classical free boundary problem with a
heat flux condition on the fixed face.

In this section, we consider the problem (1.1)-(1.5), but condition (1.2)
will be replaced by condition (1.7) and the source term is given by (1.8). If
we define the following transformation

θ(x, t) =
T (x, t)− Tm

Tm
(T (x, t) = Tm + Tmθ(x, t)) , (2.48)

then the problem to solve becomes

N(θ)θt = α0 (L(θ)θx)x −
λ0
ρ0c0t

(θ(0, t) + 1) , 0 < x < s(t) (2.49)

k (Tm(θ(0, t) + 1)) θx(0, t) = − q0

Tm
√
t

(2.50)

θ(s(t), t) = 0 (2.51)

k(Tm)θx(s(t), t) =
−ρ0 ls′(t)

Tm
(2.52)

s(0) = 0. (2.53)
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Now, we assume a similarity type solution given by (2.8). Then, the free
boundary conditions implies that the free boundary s(t) must be of the type
(2.9) where η0 is a positive parameter to be determined later.

Therefore, the conditions (2.49)-(2.53) reduces to the following problem:[
L(f)f ′(η)

]′
+ 2ηN(f)f ′(η) =

4

ρ0c0
λ0(f(0) + 1) , 0 < η < η0 (2.54)

L(f(0))f ′(0) = −q∗0 (2.55)

f(η0) = 0 (2.56)

f ′(η0) = −Mη0, (2.57)

where

M =
2α0ρ0l

k(Tm)Tm
, q∗0 =

2
√
α0q0

k0Tm

and L(f(0)) is given by (2.19).
We have that the problem (2.54)-(2.56) is equivalent to the following non-

linear integral equation of Volterra type:

f(η) = χ(η0, f)
(

1 +Q

∫ η

0

w(f)(t)
G(f)(t)dt

)
−Ψ(η, f), η > η0 (2.58)

where

Q =
4λ0
ρ0c0

, (2.59)

χ(η0, f) =
q∗0 −Mη0L(f(0)) G(f)(η0)

QL(f(0)) w (f) (η0)
(2.60)

and

Ψ(η, f) = 1 +
q∗0

L(f(0))

∫ η

0

1

G(f)(t)
dt, (2.61)

the functions G(f), w(f) are defined in (2.17) and (2.18).
The condition (2.57) becomes

Q w(f)(η0)
(
L(f(0)) + q∗0

∫ η0

0

1

G(f)(t)
dt
)

(2.62)

= (q∗0 −Mη0L(f(0)) G(f)(η0))
(

1 +Q

∫ η0

0

w(f)(t)
G(f)(t)dt

)
.

Similarly, as done in Section II, we will obtain some preliminary results to
prove the existence of the solution of the system (2.58) and (2.62).
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Lemma 2.6. Let η0 be a given positive real number. We suppose that the
dimensionless thermal conductivity and specific heat verify conditions (2.21),
(2.22) and (2.23). Then, for all f, f∗ ∈ C0[0, η0] , ∀η ∈ (0, η0), we have

|χ(η0, f)− χ(η0, f
∗)| ≤ C9 ‖f∗ − f‖ (2.63)

|χ(η0, f
∗)| ≤ C10 (2.64)

|Ψ(η, f)−Ψ(η, f∗)| ≤ C11 ‖f∗ − f‖ (2.65)

where

C8 =
LM
L2
m

[ L̃
Lm

exp
(
NM
Lm

η20

)
+ C3

]
C9 =

L2
M

L2
m

exp
(
NM
Lm

η20

){q∗0η0
L2
m

(
ÑLM +NM L̃

)
+M

L2
M

Lm

(η0
2
C3 + LMC8

)}
C10 =

LM
QL2

mη0

(
q∗0Lm +Mη0L

2
M exp

(
NM
Lm

η20

))
C11 =

q∗0η0L
2
M

Lm

{
1

L4
m

exp
(
NM
Lm

η20

)[η20LM
L2
m

(
ÑLM +NM L̃

)
+ 2L̃

]
+ 2L̃

}
.

Proof. Taking into account previous lemmas, we have

|χ(η0, f)− χ(η0, f
∗)| ≤ q∗0 |L(f∗(0))w(f∗)(η0)− L(f(0))w(f)(η0)|

L(f(0))w (f) (η0)L(f∗(0))w (f∗) (η0)

+
Mη0|L(f∗(0))w(f∗)(η0)L(f(0))G(f)(η0)− L(f(0))w(f)(η0)L(f∗(0))G(f∗)(η0)|

L(f(0))w(f)(η0)L(f∗(0))w(f∗)(η0)

≤ q∗0L
2
M

η20L
2
m
|L(f∗(0))w (f∗) (η0)− L(f(0))w (f) (η0)|

+
ML4

M

η0L2
m
|w (f∗) (η0)G(f)(η0)− w (f) (η0)G(f∗)(η0)|

≤ q∗0L
2
M

η20L
2
m

∫ η0

0

|I (f) (t)− I(f∗)(t)| dt

+
ML4

M

η0L2
m

[|w (f∗) (η0)| |G(f)(η0)−G(f∗)(η0)|+G(f)(η0) |w (f∗) (η0)− w (f) (η0)|]

≤
{
q∗0L

2
M

η0L2
m
C1 +

ML4
M

η0L2
m

[
η20

2Lm
exp

(
NM

Lm
η2

0

)
C3 + LM

Lm
exp

(
NM

Lm
η2

0

)
C5

]}
‖f∗ − f‖

= C9 ‖f∗ − f‖ .

Furthermore,

|χ(η0, f
∗)| ≤

∣∣∣q∗0 −Mη0L(f∗(0)) G(f∗)(η0)

QL(f∗(0)) w (f∗) (η0)

∣∣∣
≤ LM

q∗0 +Mη0L
2
M/Lm exp(NMη

2
0/Lm)

QLmη0
= C10.
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Finally, by (2.16), we have

|Ψ(η, f)−Ψ(η, f∗)| =
∣∣∣ q∗0
L(f(0))

∫ η

0

1

G(f)(t)
dt− q∗0

L(f∗(0))

∫ η

0

1

G(f∗)(t)
dt
∣∣∣

≤ q∗0
L(f(0))

∫ η

0

∣∣∣ 1

G(f)(t)
− 1

G(f∗)(t)

∣∣∣dt
+ q∗0

∣∣∣ 1

L(f(0))
− 1

L(f∗(0))

∣∣∣ ∫ η

0

1

G(f∗)(t)
dt

=
q∗0

L(f(0))

∫ η

0

∣∣∣G(f)(t)−G(f∗)(t)

G(f)(t)G(f∗)(t)

∣∣∣dt
+ q∗0

∣∣∣L(f∗(0))− L(f(0)

L(f(0))L(f∗(0))

∣∣∣ ∫ η

0

1

G(f∗)(t)
dt.

Taking into account (2.22), (2.26) and (2.33), we have

|Ψ(η, f)−Ψ(η, f∗)| ≤
{
q∗0
Lm
η0C4 +

q∗0L̃

L2
m

LM
Lm

η0

}
‖f∗ − f‖ = C11 ‖f∗ − f‖ .

Theorem 2.4. Let η0 be a given positive real number. We suppose that
(2.21), (2.22), and (2.23) hold. If η0 satisfies the inequality

ε(η0) := C9

(
1 +Q

η30LM

2L2
m

exp
(
NM
Lm

η20

))
+ C10Qη0C6 + C11 < 1, (2.66)

then there exists a unique solution of the integral equation (2.58).

Proof. Let U : C0[0, η0] −→ C0[0, η0] be the operator defined by

U(f)(η) = χ(η0, f)
(

1 +Q

∫ η

0

w(f)(t)
G(f)(t)dt

)
−Ψ(η, f), (2.67)

f ∈ C0[0, η0], 0 < η < η0. The solution of the equation (2.58) is the fixed
point of the operator U , that is,

U(f(η)) = f(η) , 0 < η < η0 (2.68)

We note that the nonlinear operator W is, in fact, self mapping on C0[0, η0]
by the assumptions on the thermal coefficients.

Let f, f∗ ∈ C0[0, η0]. Then, we obtain

|U(f)− U(f∗)| ≤
∣∣∣χ(η0, f)

(
1 +Q

∫ η

0

w(f)(t)
G(f)(t)dt

)
− χ(η0, f

∗)
(

1 +Q

∫ η

0

w(f∗)(t)

G(f∗)(t)
dt
)∣∣∣+ |Ψ(η, f)−Ψ(η, f∗)|

≤ |χ(η0, f)− χ(η0, f
∗)|
(

1 +Q

∫ η

0

w (f) (t)

G(f)(t)
dt
)
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+ |χ(η0, f
∗)|Q

∫ η

0

∣∣∣w(f)(t)

G(f)(t)
− w(f∗)(t)

G(f∗)(t)

∣∣∣dt+ |Ψ(η, f)−Ψ(η, f∗)| .

Then, taking into account Lemmas 1, 3, and 9, we obtain

|U(f)− U(f∗)|

≤
{
C9

(
1 +Q

η30LM

2L2
m

exp
(
NM
Lm

η20

))
+ C10Qη0C6 + C11

}
‖f∗ − f‖

Finally, we have

‖U(f)− U(f∗)‖ ≤ ε(η0) ‖f∗ − f‖ .

Then, there exists a unique solution of the integral Eq.(2.58) if condition
(2.66) is verified. (i.e., U is a contraction operator). �

Let Σ be the set defined by

Σ = {η0 ∈ R+/ε(η0) < 1} = {η0 ∈ R+/there exists a solution of (2.58)}.

Lemma 2.7. Function ε = ε(η) given by (2.66), satisfies the following prop-
erties:

(i) ε(0) =
L6
M
L6
m
ML̃(1 + 2LM

Lm
), (ii) ε(+∞) = +∞,

(iii) ε is an increasing function
(iv) If

L6
M
L6
m
ML̃

(
1 + 2LM

Lm

)
< 1, (2.69)

then there exists η̃ > 0 such that ε(η) < 1 for all η ∈ (0, η̃).

Next, we prove that the equation (2.62) has a unique solution. For this,
we define for x ∈ Σ the following functions:

V1(x) := (q∗0 −MxL(f(0)) G(f)(x))
(

1 +Q

∫ x

0

w(f)(t)

G(f)(t)
dt
)
, (2.70)

and

V2(x) := Q w (f) (x)
(
L(f(0)) + q∗0

∫ x

0

1

G(f)(t)
dt
)
. (2.71)

We have:

Lemma 2.8. The functions V1 and V2 satisfy the following properties:
(i) V1(0) = q∗0 , V1(+∞) = −∞,
(ii) V2(0) = 0 , V2(+∞) = +∞ and V2(x) ≥ 0 for all x > 0.

Theorem 2.5. If (2.69) holds, then (2.62) has at least one solution η0.

Moreover, if ε(
q∗0

MLm
) < 1, then ε(η0) < 1.
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Proof. By the above Lemma, there exists at least one solution η0 of (2.62)
and it is satisfied V1(η0) = V2(η0) > 0. Let x0 = min{x > 0/V1(x) =
0} = min{x > 0/q∗0 − MxL(f(0)) G(f)(x) = 0} = min{x > 0/q∗0 =
MxL(f(x))I(f)(x)}.

By properties of L(f) and I(f), we have η0 < x0 ≤ q∗0
MLm

. Then, if

ε(
q∗0

MLm
) < 1, we have ε(η0) < 1. �

Theorem 2.6. If N and L verify the conditions (2.21), (2.22), (2.23), (2.69)

and ε(
q∗0

MLm
) < 1, then the non-classical free boundary problem (1.1), (1.3)–

(1.5), (1.7), and (1.8) has a unique solution given by (2.9) and T (x, t) =
Tm + Tmf(η), η = x

/(
2
√
α0t
)

where the function f = f(η) is the unique
solution of (2.58) and the coefficient η0 > 0 is given by Theorem 13.

Remark 2.2. In this paper, we have generalized the non-classical Stefan
problems raised in [7] with the constant thermal coefficients and a source
term given by ( 1.6) or (1.8). Moreover, if we consider null source term
in the nonlinear Stefan problem ( 1.1)–( 1.5) and in the nonlinear Stefan
problem ( 1.1), (1.3)–(1.5), ( 1.7), we obtain the same solution given by [4].
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