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1. Introduction

We study a non-linear free boundary problem for a semi-
infinite region x >0 with a Dirichlet boundary condition at the
fixed x=0 given by condition (2). It is required to determine the
evolution of the moving phase separation x=s(t) and the dis-
tribution 0(x,t). The modeling of this kind of systems is a problem
with a great mathematical and industrial significance. Phase-
change problems appear frequently in industrial processes and
other problems of technological interest [1-10].

Owing to [13] we consider the following a free boundary
problem with non-linear diffusion equation and a convective
term

%f = % (D(G,x)%)—v(())%, O<x<s(), t>0 @))
00,H)=g(t)>0, t>0 2)
D(H(s(t),t),s(t))g—f (s(t).t) = —os(t), t>0 3)
0(s(t),t)=0, t>0,s0)=B “4)
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0x,00=f(x)>0, 0<x<B 5)

where the velocity v(0) and the medium diffusivity D(0,x) are
given by

1+dx

— 1 rax 6
(a+b0y? ©

v(0) = D(0,x)

_d
2(a+b0y?’

with positive parameters a,b,d and «. This kind of non-linear
conductivity or diffusion coefficients was considered in numerous
papers, e.g. [11-21]. In [18] it was founded that the non-linear
diffusion equation can be transformed to the linear form that
possesses a well-known analytical solution when the soil water
diffusivity is given by D(6) = a(b—6) 2, where a and b are constant.
Moreover, they argued that the diffusivity functional form is
plausible for soil water diffusivities. The non-linear transport
equation (1) arises in connection with unsaturated flow in
heterogeneous porous media. If we set d=0 and b=0 in the free
boundary problem (1)-(6) then we retrieve the classical one-
phase Lamé-Clapeyron-Stefan problem.

We follow [13] where it was studied a analogous problem but
the boundary conditions allowed to use the similarity method.

The goal of this paper is to prove the local existence and
uniqueness in time of the solution to the problem given by
(1)-(6). First, under the Bicklund transformation, we reduce the
problem to an associated free boundary problem and we prove
that the problem is equivalent to solve a system of Volterra
integral equations (38) and (39) [22,23] following Friedman-
Rubinstein’s method given in [24,25]. Then we prove that the
system of equations (38)-(39) has a unique local solution by
using the Banach contraction theorem.
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2. Statement of the problem

We consider the free boundary problem (1)-(5). We will make
the following assumptions on the initial and boundary data:

(i) Let a,b,d,x e R™ with o <a/b.
(i) Let f e C'[0,B] be a non-negative function with f'(0) > 0.
(iii) Let geC![0,1] be a non-negative function and D=
max; ¢ 0,118(0)-
(iv) Compatibility conditions: f(0) =g(0) and f(B) =0.

Taking into account (6) we can put our problem as

gf=£<<(;:b(gzg+zb(aibe)>' O<x<st) t>0 @
00,t)=g(t), t>0 (€))
”a;ds(t)@(s(t) t)=—as(t), t>0 9)
0(s(t).)=0, t>0,s0)=B (10)
0(x,0)=f(x), 0<x<B an

If we define the transformations in the same way as in
[11,13,21]

y:%[(1+dx)l/2—l]

" (12)
0(y,t) = 0(x,t)
we obtain the following associated free boundary problem:
a0 1 a0 -
5:@<(a+b0)2@>’ O<y<S(),t>0 (13)
000,0)=g(t), t>0 (14)
a2 6y (S(t) t)=—aS"(t), t>0 (15)
0S(t),t)=0, t>0,S0)=B (16)
0,00=f(@), 0<y<B
where
B= g[(1+dB)1/2_1] fo=f 1 §y+1 2—1 7)
—d ’ \d [\2
and
S0 = 211+ s~ 1) as)

is the free boundary.

By using the Backlund transformation we consider the new
transformation

yE=yE(y,b) = Sy( )(a+b9(a 1)) do+(—ab+a)S(t)

1 (19)
Py =——
o0 a+bl(y,t)

In order to obtain an alternative expression for y* we compute

ay* — e Y80 e
S = —@+bISO.S" O+ /§ DD do(obras'®

5 1 o0
= —abS"(0)+ / o a0 (m 50’)

< 1 1480
— —abS 1 S
xbS (O +b ((a+b0(y t))? oy 0/ b= a? ay( O t)>
b
may j00
y 0 b b
= LD~ 2 —_— 2
~/0 oo ((a+b0(a t))2 oo (O- )> (a +bg(t))2 ay (O H (20
b o0
5~ 21
/ (o t)do+ @bl 0, 1)

and therefore the new expression for y* is given by

t ry o yal
y"‘(y,t):/0 (/0 a%(a+b0(a,r))do+ b @(O,r)>dr

(a+bg(0)? oy
+ /0 y(a+ b0(s,0)) do+ ﬁg(o, 0)
= /(;y(a+b5(a,t)) do+ / may (0 T)ydt+M*  (22)
where
= e ©

Now, applying (12) and (19) the problem (7)-(11) is trans-
formed in a free boundary problem with a Dirichlet boundary
condition given by

00" &0, .
o= yEt) <y* <S*b), t>0 (23)
O* s, =g t), t>0, y50)=M" (24)
66* ok .*
ay — 5,0 =—g* Y5, t>0 (25)

%
@(s*(t) t)=o *S*(t) t>0 (26)
0*S* =07, t>0 27)
0" y*,0) =f**), M*<y*<B* (28)
5*(0) = B* (29)
where

. ob w1 . =

= aCabia)’ ef_a, B*=(—ab+a)B (30)

w1 1 woe 1
g(t)—a+bg(t)2—a+bD. f(y)—a+bﬂy) (31)
and

b

t
J’3(t)=y*‘y:02/omay(0 7)dt+M (32)

S* () =y y—s0=(-ob+ a)S(t) (33)

are the free boundaries.

3. Existence and uniqueness of solutions

We have the following equivalence for the existence of solu-
tions to the free boundary problem (23)-(29).
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Theorem 1. The solution to the free boundary problem (23)-(29) is
given by the following expression:

t*

C00= [ GOELOSO ) [ Gy S @ oW de

t t
_9}‘/0 G:(y*,t;5%(1),7) d'c+/0 G-(y* YD), Dg* (1) dt

(34)
and
ot
yé(t):M*—/ w(t) dt (35)
0
t
S*ty=B*+ / W(t) dt (36)
0
where the functions w, W are defined by
-1 80* . 180%
w(t) = g*(t)@/i*(yoa)'t)‘ W) = EW(S ((389)] 37

and they must satisfy the following system of two Volterra integral
equations:

1 B _ v
w() = g*(t){ | NOBO.E 0 (O de
-
+(0F o) A Gy-(V§(b),t; S*(1), 1)W(T) dT
t .
—/0 N5, 6 Y5(),T)g*(T) df} (38)
2 B ,
Wt =—>— { [ NS o680 @ e
oc*—(?f M*

-
+(0F +o%) /0 Gy (S¥(t),t: S* (1), HDW(T) dt

t .
- [ Nswsymog@ dr} (39)

where G, N are the Green and Neumann functions and K is the
fundamental solution to the heat equation, defined respectively by

G(x,t,E,7) = K(x,t,E,7)—K(—x,t,&,7) (40)

N(x,t,E,7)=K(x,t,E,7)+K(—x,t,£,7) 41

1 ex (x=¢)” t>1
K(x,t,é1)={ 2/n(t="1) P 4t-7) )’
0,

(42)
t<t

and y§ and S* are given by (35) and (36) respectively.

Proof. Let 0%(y*,t) be the solution to the problem (23)-(29). We
integrate on the domain

Dy, = (&) /y5(1) <E<S* (e <T<t—g} (6>0)
the Green identity
(GOE—0"Ge):—(GO"), =0 (43)

and we let £¢—0, to obtain the integral representation for 6*(y*,t)
[24,25]

B* t
000 = [ GOEEOF @ der 0 o) [ oS @ oW de

t t
_9}‘/0 Gg(y*,t;s*(r),r)df+/o G:(y* t:y5(1),1)g*(7) dt
(44)

by using the definitions of w(t) and W(t) given by (37). Moreover,
if we differentiate (44) in variable y* and we let y*—>y$*(t) and
y*—S*7(t), by the jump relations [24], we obtain the system of
integral equations (38) and (39) for w and W.

Conversely the function 6*(y*,t) defined by (34), where w and W
are the solutions of (38) and (39), satisfies the conditions (25),
(26), (28) and (29). In order to prove the conditions (24) and (27)
we define

P1(t)=0"S"O,H—-0; and @, (t) = 0" (V5(t),)—g*(t)

If we integrate the Green identity (43) over the domain Dy,
(¢ > 0) and we let ¢~ 0, we obtain that

0y o= . /M B GO*,t% 8,00 () dE+ ' /0 t G t*; (1), )0 (S* (), )W () dt
+ /O [[G(y*,t; S*(0), D*W(1)—0*(S* (), )G (v* t; S*(1),7)] dt
+ /O [ G* Y50, DO Vi(D), Tw(t) dt
- /0 [[G(y*,t;y’g(r).r)g*(r)w(r)—0*(y§;(r),r)Gg(y*,t;y?;(r),r)] dt

(45)

Then, if we compare this last expression (45) with (34) we deduce
that

t
/0 [GY™*,t; S* (D), DW(T) -G (v*,£; S*(1), D)4 (1) dt

t
+ /0 (G- (", £: V(00— GO £ V3D, OWD]po(1) dT =0 (46)

We let y*—S*(t) and y*—>y3* (t) in (46) and we use the jump
relations to obtain that ¢, and ¢, must satisfy the following
system of Volterra integral equations:

ot
Pr(t)=—2 /0 (GSH (0.1 S (1), DIW(T) + G (S (0),1: S*(1), D)@y (1)

+[Ge(S* (O, Y50 D)+ GS (0,6 Y5 (1), WD, (D)} dT - (47)

ot
() =2 /O (IG5, S5 (D), DW(T)—G: (V§(1),t; 5 (7), D4 (7)
+[Ge (V50,6 Y5(0),T) + GG (0, 5 Y§(0), DHW(D)] P, (1)} dT - (48)

Following [23] it is easy to see that there exists a unique
solution ¢, = ¢, =0 to the system of Volterra integral equations
(47)-(48). Then (24) and (27) holds. O

Next, we use the Banach fixed point theorem in order to prove
the local existence and uniqueness of solution w,W e C°[0,0] to
the system of two Volterra integral equations (38) and (39) where
o is a positive small number to be determinate. We consider the
Banach Space:

— w —
Cro = {w* = <W>/W,W :[0,6]— R, continuous, with lw*l, sR}
where
IW*lls == max |w(t)| + max |W(t)|
t €[0,0] t €[0,0]

We define the map F : Cg ,—>Cg,, such that

Fr(w(D),W(1)) )

WH(t) = F(W*(t)) = ( Fo(w(t), W(t))
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where

JM

1 B .
F1<W<f>’W<f>>=g*(t){ . NOBO.E S0 (&) de
t
+(OF +a) /0 Gy (V3(D,6:S* (), OW(2) dt

t *
—/0 N5 0.t:y5(0),0g () df} (49)

and

2

Fa(WO.W(D) = =
—f

{ /M NS*O.6% 8,00 (&) d¢
ot

+(0F +o%) / Gy+(S*(£),£; S*(1), W (1) dt
0

t .
- [ Nsoryso0go dr} (50)

Lemma 2. Let w, WeC%0,0], max;cjoq|W(t)| <R, maxcoq|
W(t)| <R and 2Ro < M* <B*/3 then y§ and S* defined by (35) and
(36) satisfies

|Vs®—-y5(m)| <R|t—1|, V1,te[0,0]

% R

-5 <V =—-,

5 vt €[0,0]

|S*(t*)—S*(1)| <R|t—7

, Vt,te[0,0]

&3 34
%ss*(t)g%, vt €[0,a]. O (51)

To prove the following lemmas we need the classical inequality:

—x2
exp(
oc(t—r)) no. \"/?
o S (Gga) - @x>0t>znel. (52)

Lemma 3. Let ¢ < 1. Under the hypothesis of Lemma 2 we have the
following properties:

/MB F* O] N, 55 £,0)[dE < If* I (53)
/0[ |Gy (¥3(0),; S*(1), DW(7)| dT < C1(R,B* M*)t (54)
/(;[ 85| IN0E(0). Y50, 0)| de 32\/%\\g.*\l (55)
/M B F¥ (&) INS*(0),t; £,0)| dé < If¥ I (56)
/0 t |Gy (S*(t),£; S* (1), DW(T) | dt < C2(RB*)VE (57)
/0 t 185(0)| NS (E9),%: 5 (0), )| dt < 2\/;|g'*u (58)
where

e V6 1 1
SUESAES Jern LB*—3M*)Z - (B*+M*)2} R

and

R

C2(R,B*) = i/m

3 2 3/2
=169

Proof. To prove (53) we consider

B , i 0 ,
[P @l INosEe: 20 d2 < 151 [ [Noen. e £0) de <11

We have
% () C¥ 2
: exp (—‘%Z(?_f) © >
‘Gy*(Y’S(t*)-t*;S*(T)yT)‘ < N \yé}(t*)—S*(r)\ ()2
—(5(t)+S" ()
sk 4k S* eXP( 4(t_T)
+[y5()+5°@)| o
and by using Lemma 2 and (52) we obtain
V6 1 1
Gy (V5 (t),t*: S*(1),1)| < —— 59
|Gy 035" @] < T [(B*_3M*)z M M*)z} 9)

Then (54) holds.
To prove (55) by taking into account that

INWS(E)*:y5(0),7)| <

1
VT (t—71)

so, we obtain

t o t -
/0 |g* (O | INWEE). 5 yi(D),7) | dT §2\/;Ilg*\\

The inequality (56) is proved in the same way as (53).
In [26] it was proved

1 R 3 /2\3?
|Gy(S*(t),t:S(T), )| < Wes { =t <§> }

then we have (57).
The inequality (58) is proved in the same way as (55). O

Lemma 4. Let ST and S5 be the functions corresponding to W, and
W, in C°[0,0] respectively and Yo% and yo3 be the functions
corresponding to w, and w, in C°[0,q] respectively with

E{%,’f;]‘wf(t)‘ <R, trgn[gﬁ]\wi(t)\ <R,

then we have

[S5(H)—=ST(0)| < tIW,—Wll,
|Sf(6)—Si(0)| <R|t—1|, i=1,2

B* 3B* (60)
5 gs;‘(t)ST, vte[0,0],i=1,2
and
|VE (O)—YE (O] < tiwy—wy g
lyEO—-y&(D| <R|t—1|, i=1,2 - 1)

M* 3M*
-5 <Yoif(t) < 5

vte[0,0], i=1,2.
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Lemma 5. If we take R>°¢ <1, 6 <1 and 2Rc < M* < B*/3 then we
have

t
/O Wa(0)Gye (VE, (£, £ SE(T), 1)~ W (1)Gye (5, (£1,£: S (2),7)| e

< [P3(M*,B*)HW1 —W, Il +RP (M*,B*)HW] —whll
+RP,(M*,B*) W —W, IVt (62)

.B* )
[ I OIINGG, 0.:£0-NG7, (0.6:£.0)| dé

211

N Iw; —w, /G (63)

<

t .
/O 1240 N, (0,6:y5, (0. 1)—NE (O,L.YE (1),7)] dt

< P4(M*,R)\|§*n lwy —ws IVt (64)

B
[ I @IIN3 0.6 c0-NiSi0.8:2.0)|

< If*I %nwﬁwznﬁ (65)

t
/0 |[W2(T)Gye (S5 (8),t; S5(T),T)— W1 (T)Gy(S7 (1), £; ST(7),7) | dT
< Ps(R,B*)IW;—W, it (66)

t
/0 8% (0| NS5 (0.£:¥5, (), 1) =N(ST(O),L.Y5, (1), D) de

< 18" IPs(M* B*)(lwy —ws [l + W1 —W, )¢ (67)
where
w1 |VBBB*-M*? 273 126 63
LB = en {16(3*73M*)3 Ta T ey T vy
(68)
oy 1246 1 9  (3B*—M*)? 1
PoM*.B7) = VTed2 |(B*—3M*)3 ' 8 ' 8(B*-3M*)® ' (B*+M*)?
(69)
V6 1 1
P3(M*‘B*):J7_e (B*-3M*?  (B*+M* 70
R*  /6\*% 3R
P )= 2+ (0) s
o 1 3 (2)** 6R (6\*
Ps(R,B)—m 6R+F 3e +ﬁ e 71
. 632 | 3B*—M* 3
Pe(M*,B*) = Jme3? {(3*31\/1*)3 (B*JFM*)z} (72)

Proof. To prove (62) we have
[Wa(D)Gys V5, (6,85 S5(0), 1) = W1 (D)Gy (v, (1), £ 5T(7),T) |
< |W1(D)=Wa(0)|| Gy (¥, (), t; S5(T),7) |
+ Wi |Gy (5, (0,8 55(2), 1) =Gy (V5 (0, S7(7), 7) |

Taking into account that
|Gy V5, (D, £: S3(0), D) =Gy (V5 (6),: 57(2), D)

< |Gy (v, (0),£: S3(0), D) =Gy (V5 (D), S5(7), 7))
+[ Gy (5, (D,£: S5(0), D) =Gy (V5 (D), £: 57(0), D) 73)
and by using the mean value theorem we have that there exists
m = m(t) between yg (t) and y§ (t) such that
|Gys V5, (6,85 S5(0), 1) =Gy (V5 (), £: S5(7),T)|
= |Gyrys(M(1),;S3(0), )| |¥§; (D —Y52(D)|
=|Ge(m(t),t; S5(2),0)|[¥5, (H-V5, ()]

and there exists n = n(t) between S}(t) and S3(t) such that
|Gy (5, (6,8 S3(0), D) =Gy (V5 (D), £ ST(7),7)|

=[Gy 05, (0,£:1(0), ) | [ ST(EH)=S3(1%) |

= [N(v5, .t (1), 7) | |ST(EF)=S5(t%)|.

Taking into account that
S 1 st
|Ge(m(t),t; (1), 7)| < T {(m(t)—sz(mz exp(

—(m(t)+S5(1))*
4(t—1)

1 —(m(t)—S5(1))?
* 4/m(t—-1)*? {exp < 4(t-1)

—(m(t)+S5(1))*

and

—(m(t)—S5(1))>
4(t—1)

+(m(t)+S5(1)*exp <

[Ny, .t:(0),7)| <

. —(5, —n(0)?
(¥5,~n(0))” exp <j(t7_f;))>

1
=
. —§, +n(0)?
+(p, +n(v) exp (Z}[;g))}

. 1 o —(y§, —n(1)) - 5 (D)
aymi—o? | TP\ e P\ a0

from (52) and Lemma 2 we have

|Gy (¥, (£), 5 S5(), 1) =Gy (v, (0,6 S7(7),7) |
<P (M*,B*)fHW] —wWll¢ +P2(M*,B*)THW] —Wohll¢

Moreover, by (59)

% ok Jé 1 1
|Gy (5, (D), £:S5(D),7)| < —— (B M*)2

Jer |(B*—3M*)? =P8

then, we obtain
[Wa(D)Gy (v, (£),£: S5(0), D) —W1(D)Gy= (V5 (£),£: S7(T),7) |
< P3(M*, B)IIW1 =Wl + [P (M*, B)tIwg —w; I,
+ Py (M*,B*)TIW{—W; IR

and (62) hold.
Following [26] we obtain (63) and (65).
To prove (66) we use estimates obtained in [27].
To finish the thesis, we shall prove (67):

"t e
/0 1250 NS0, 6YE, (0,0 -N(SH (), 6y%, (1),0)] de

. t
< Ig*l /O (N3 EYE, (1,1 NSO, LYE, (1),7)]
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+[N(S3(0.6Y5, (0, 1)=NST(O).LY5, (1),7) |} dT 74

By the mean value theorem there exists c(t) € (v§, (7).y§, (7)) such
that

IN(S3(0),t,y5, (D), D)—N(S5(1),t.¥5, (7),7)]
= [N:(S5(0).t,c(0),0)| |y§, (DY, (D)
—(sz‘(n—c(r)f)

] exp(
< ——{ [S¥(B—c(v)|

4(t—71)
T 4aym (t—1)*/?
—(S*(t) +c(0)?

+[S* )+ o %5, (0-y5, (@)

then taking into account (52) and Lemma 2 we have
IN(S3(),,¥5, (1), 1) =N(S3(6).£.¥5, (0),7)| < Ps(M*,B*) |y, (t)—Y5,(7)]

Furthermore, in a similar way we have that exists C(t)e
(S5(t*),S5(t*)) such that

INS3(0),t.Y5, (0,0 —NSTO).LY5 (0,7)
= [Ny (C(0),L,Y5, (0,0 | S5 (=S5 (£)| < Pe(M*,B*)|S5(t)—ST(t)|

then (67) is obtained. O

Theorem 6. The map F : Cr,—>Cr, is well defined and it is a
contraction map if ¢ satisfies the following inequalities:

o3
o<1, 2RU§M*<%, RPo<1 (75)
Hi(lg*ll;,a,b,B*,07,0,D,M* R,0) < 1 (76)
Hy(IF*1,1f* la,b,B*,6F o*,D,M*,R,0) < 1 (77)
where R is given by
" 2
R=1+If*II| a+bD+ —— (78)
|or*—0F |

and
Hi(Ig*ll¢,a,b,B*,6f 0*,D,M* R,0)

% % 2 °
= (a+bD){(0}"+o¢*)C1(B JRM*)o + Ne: Hg*\lm/E}

2 .
R B RV +4\/i|g*g} (79)

+| 27

o+ —0F | {(9?+“*)

H,(lIg*ll7,a,b,B*,07,0*,D,M* R,0)

= (a+bD){% IF¥ I +(0F +0%) <P3(M*,B*)+RP1 (M*,B*)+ w>

+Hg'*n,,P4(M*,R)}+ 2 (2“f ”+(0}‘+u*)P5(M*,B*)

w7 v
+lig* HJPG(M*,B*)> (80)

Then there exists a unique solution on Cg, to the system of integral
equations (38) and (39).

Proof. Firstly we demonstrate that F maps Cg, into itself, that is
IF(W*)ll; = max |Fy(w(t), W(t))| + max |[Fo(w(t),W(t))| <R
te[0,0) te[0,0]

Taking into account Lemma 3 we have

[F1(w(t),W(t)| < (a+bD){ IF* I +(0}"+a*)c1 (B*,R,M*)t+2\/%g.*l}

2 % % % R d t .*
|[Faw(t), W(0)| < M{Hf Il +(0F +o )mCZ(B .R)\/f+2\/;l\g H}

and then

HF(VV*)H(; <IIf*1 <a+bD+ ) +H1(Hg.*HJ,a,b,B*,G}“,a*,D,M*,R.G)

2
|os— 67 |
where H; is given by (79). Selecting R by (78) and ¢ such that (75)
hold, we obtain IF(w*)ll, <R. Now, we will prove that

IFWE)—FWh)ll, < Hy(1g*1 5,a,b,B*, 0%, D,M* R,c) I W& —wi I,

— —
rlvhere wi = (V"\V,ll Wi = (WZ ) € Cr . Taking into account Lemma 5 we
ave

IFOW3)—FOW)ll; = max [ Fy (w6, Wa()—F1 (wi (0.W1 )]
X Fa W0, Wa(0)~Fawr (0.W3 (1)

2

< { (a+bD) [ N IF* +(0F +o*) (Pg(M*,B*)+RP1 (M*,B*)+

RP,(M*,B*)
2

+(0F +0*)Ps(M*,B*)

3 e
+Hg*HGP4(M*,R)}+ 2 [2nf !

] L v
+ ng'*uPG(M*,B*)] }u@_ff;uaﬁ

< Hy(1g*1,,a,b,B*,0%,00%,D,M* R, )l w5 —wi |, 81)

By hypothesis (75)-(78) we have that F is a contraction. O

4. Conclusions

A one-dimensional free boundary problem is studied for a
non-linear diffusion-convection equation whose diffusivity is
heterogeneous in space as well as being non-linear. After using
some non-linear transformations that simplify the transport
equation to a form that is both linear and homogeneous in space,
the transformed problem now has two free boundaries. It is
shown that the problem is equivalent to a system of two integral
equations. Then sufficient conditions for data was found applying
the Banach contraction theorem, to prove existence and unique-
ness, local in time of the solution.
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