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Abstract

Unknown thermal coefficients of a semi-infinite material of Storm’s type through a phase-change process with an
overspecified condition on the fixed face are determined. We follow the ideas developed in C. Rogers (Int. J. Non-Linear
Mech. 21 (1986) 249—256) and in Tarzia (Adv. Appl. Math. 3 (1982) 74—82; Int. J. Heat Mass Transfer 26 (1983)
1151—1157). We also find formulae for the unknown coefficients and, the necessary and sufficient conditions for the
existence of a similarity solution. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The modeling of solidification systems is a prob-
lem of a great mathematical and industrial signifi-
cance. Phase-change problems appear frequently in
industrial processes an other problems of technolo-
gical interest [1, 2, 3—11]. A large bibliography on
the subject was given in [12].

Here, we consider a phase-change process (Stefan
problem) for a non-linear heat conduction equation
which admits a class of exact solutions analogous
to the classical Lamé Clapeyron solution [13].

In this paper we consider an overspecified condi-
tion on the fixed face to the semi-infinite material,
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given in [14], for a phase-change process of
a Storm’s-type material [15—18]. This allows us to
consider some thermal coefficients as unknowns
and to calculate them, under certain specified re-
strictions upon data.

The particular cases of determining constant
thermal coefficients for a semi-infinite material
were considered in [17, 18]. An analogous problem
for a thermal conductivity as an affine function of
the temperature was given in [19].

We suppose that the thermal coefficients
CM (¹ )"oc

p
(¹ ) and kM (¹ ) verify the following rela-

tion [20, 21]:

CM (¹ )

kM (¹ )AP
T

Tr

CM (z) dzB
2
"K* (K*'0 constant), (1)

0020-7462/98/$19.00 ( 1998 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 2 0 - 7 4 6 2 ( 9 8 ) 0 0 0 3 6 - 5



where ¹
3

is a reference temperature
(¹

3
O¹

0
, ¹

3
(¹

&
) and we shall consider the fol-

lowing solidification problem [16, 17, 22] with an
overspecified condition (see conditions (3) and (4)
below) on the fixed face x"0 [14]:

oc
p
(¹ )¹

t
"(kM (¹ )¹

x
)
x
,

0(x(s (t), t'0,

¹(0, t)¹
0
(¹

&
, t'0,

kM (¹(0, t))¹
x
(0, t)"º(t), t'0,

kM (¹(s(t), t))¹
x
(s(t), t)"oh sR (t), t'0,

¹(s(t), t)"¹
&
, t'0,

s(0)"0.

(2)

(3)

(4)

(5)

(6)

(7)

(P
1
)

The heat flux º (t) is given by [14]

º(t)"
q
0

Jt
, (4 bis)

where q
0
'0 is a constant which characterizes the

heat flux on the fixed face x"0 of the phase-
change material which can be determined experi-
mentally.

We remark that if equation (1) is true then kM (¹ )
and CM (¹ ) verify the Storm’s relation [16]

1

JkM (¹ )CM (¹ )

d

d¹ A logS
CM (¹ )

kM (¹ ) B"JK*. (8)

Condition (8) was originally obtained by
Storm [21] in an investigation of heat conduction
in simple monoatomic metals. There, the validity
of the approximation (8) was examined for
aluminium, silver, sodium, cadium, zinc, copper
and lead.

The goal of this paper is to determinate the
temperature ¹"¹(x, t), one or two unknown
thermal coefficients chosen among Mo, h, kM (¹ ),
K*N, as a function of data ¹

0
, ¹

&
, q

0
, depending if

x"s(t) is a free (unknown function) or a moving
(known function) boundary. We use the difference
between free and moving boundary problems given
in [12].

In Section 2 we consider (P
1
) as a free boundary

problem, that is x"s (t) is unknown and we obtain
it, the temperature ¹(x, t) and one thermal coeffic-
ient chosen among Mo, h, kM (¹ ), K*N. We study four
cases which are summarized in Table 1 and we only
give the proof of cases 1, 3 and 4.

In Section 3 we consider (P
1
) as a moving bound-

ary problem, that is x"s(t) is known (given by the

expression s(t)"2pJt with p'0 a given con-
stant) and we obtain the temperature ¹(x, t) and
two thermal coefficients chosen among Mo, h, kM (¹ ),
K*N. We study six cases which are summarized
in Table 2 and we only give the proof of cases 7,
8 and 9.

In both Sections 2 and 3, we give necessary and
sufficient conditions to have solutions and we also
give the formulae for the unknown thermal coeffi-
cients with the restrictions for data to obtain the
corresponding solutions.

In order to improve the paper we have also
written two appendices A and B. Appendix A con-
tains the definition of the functions which are used
in the text with their corresponding properties. In
Appendix B, we point out the restrictions upon
data which became necessary and sufficient condi-
tions for the existence of solution.

2. Unknown thermal coefficients through a free
boundary problem

We consider problem (P
1
) with Eqs. (1) and

(4 bis). Following [16] we do several transforma-
tions in order to obtain the classical Stefan like
problem (P

3
).

Let

Q2
0
"K*q2

0
, (9)

k(¹ )"
kM (¹ )

q
0

, (10)

C(¹ )"
CM (¹ )

q
0

. (11)

Then, we obtain the following problem (P
2
), which

is equivalent to (P
1
):

330 A.C. Briozzo et al. / International Journal of Non-Linear Mechanics 34 (1999) 329–340
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0
(¹

&
, t'0

k(¹(0, t))¹
x
(0, t)"

1

Jt
, t'0

k(¹(s(t), t))¹
x
(s(t), t)"

oh

q
0

sR (t),

t'0

¹(s(t), t)"¹
&
, t'0

s(0)"0.

(12)

(13)

(14)

(15)

(16)

(17)

(P
2
)

Condition (1) is given now by

C (¹ )

k(¹ ) ( :T
T3

C(z) dz)2
"Q2

0
. (1 bis)

Now, we define

'(¹ )"P
T

T3

C(p) dp. (18)

Then, the non-linear equation (Eq. (12)) becomes

L
Lt

'(¹ )!
L
Lx C k(¹ )

L¹
Lx D"0, (19)

and condition (1) or (1 bis) is equivalent to

'@ (¹ )

Q2
0
'2(¹ )

"k (¹ ). (20)

If we define the transformation

x*(x, t)"P
x

0

'(¹ ) dx#2Jt

t*"t

¹ *"
1

' (¹ )

(21a)

(21b)

(21c)

and taking into account Eqs. (1), (1 bis) or (20),
problem (P

2
) reduces to the following free bound-

ary problem:

¹*
t*
"

1

Q2
0

¹*
x*x* ,2Jt*(x*(s*(t* ),

t*'0, (22)

¹*(2Jt*, t*)"¹*
0
, t*'0, (23)

1

Q2
0

L¹*

Lx*
(2Jt*, t* )

"!

1

Jt*
¹* (2Jt*, t*), t*'0, (24) (P

3
)

1

Q2
0

L¹ *

Lx*
(s*(t*), t*)

"

!

ho
q
0

ds*

dt*
(t*)

' (¹
&
)C'(¹

&
)#

ho
q
0
D

, t*'0, (25)

¹*(s*(t*), t* )"
1

'(¹
&
)
, t*'0, (26)

s*(0)"0. (27)

where

s*(t*)"x* D
x/s(t)

"C'(¹
&
)#

ho
q
0
D s(t)

is the new free boundary and

¹*
0
"A P

T0

T3

C(p) dpB
~1

"

1

'(¹
0
)
.

Taking into account that problem (P
3
) is a classi-

cal Stefan-like problem [3, 13] with an overspeci-
fied condition, the two free boundaries conditions
imply that the free boundary s (t) must be of the
type

s(t)"2pJt, (28)

where p is an unknown parameter to be deter-
mined.
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Now we assume a similarity solution

m*"
x*

2Jt*
, (29)

¹*(x*, t* )"'*(m* ); (30)

then, the problem (P
3
) reduces to the following

problem:

2Q2
0
m*

d'*

dm*
#

d2'*

dm*2
"0,

1(m*(A'(¹
&
)#

ho
q
0
Bp,

d'*
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"!2Q2

0
'*, m*"1,

'*"¹*
0
, m*"1,

'*"
1

'(¹
&
)
,

m*"A'(¹
&
)#

ho
q
0
Bp,

d'*

dm*
"

!2hoQ2
0
p

q
0
'(¹

&
)

,

m*"A'(¹
&
)#

ho
q
0
Bp.

(31)

(32)

(33)

(34)

(35)

(P
4
)

The solution of (31) is given by

'*(m*)"A erf[Q
0
m*]#B, (36)

where the constants A, B, p, and the unknown coef-
ficient (chosen among o, h, k(¹ ) and Q

0
) are deter-

mined by conditions (32)— (35) which yield

A exp(!Q2
0
)"!Q

0
Jn[A erf(Q

0
)#B], (37)

A erfCpQ
0A'(¹

&
)#

ho
q
0
BD#B"

1

' (¹
&
)
, (38)

A

Q
0
Jn

expC!p2Q2
0A'(¹

&
)#

ho
q
0
B
2

D"
!hop
q
0
'(¹

&
)
,

(39)

¹*
0
"A erf[Q

0
]#B, (40)

and all coefficients must satisfy the condition (1) or
(20) when it is available.

Finally, we invert the relations (9), (21a), (21b),
(21c) and (30), and we use conditions (37)— (40), to
obtain the parametric solution to the problem (P

1
):

¹"'~1 C
1

A erf[q
0
JK*m*]#BD (41)

m"P
m*

1

'* (m*) dm* (42)

where the constants A and B are given by

A"!C'(¹
&
)C

1

Q
0
Jn

exp(!Q2
0
)

#erf(Q
0
)!erfApQ

0A'(¹
&
)#
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q
0
BBDD
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,
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1

'(¹
&
)
!A erfApQ

0A' (¹
&
)#

ho
q
0
BB.

Then, the coefficient p and the unknown coeffic-
ient (chosen among o, h, k (¹ ) and Q

0
) must satisfy

the following system of equations:

erfApQ
0A'(¹

&
)#

ho
q
0
BB#

q
0

JnhoA'(¹
&
)#
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q
0
B

]
exp (!p2Q2
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0A'(¹
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)#
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BB!erf(Q
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)
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0
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1
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and conditions (1) or (20) when k (¹ ) is one of the
coefficients to be determinated.

If we define the dimensionless parameters:

a"A'(¹
&
)#

ho
q
0
B

q
0

hoJn
,

g"A'(¹
&
)#

ho
q
0
BQ

0
p,

b"C1!
'(¹

0
)

'(¹
&
) D

1

Jn
,

(45a)

(45b)

(45c)

the systems (43)—(44) is equivalent to

erf(g)#a
exp(!g2 )

g
"

1

Jn

exp(!Q2
0
)

Q
0

#erf(Q
0
),

(46)

erf(g)!erf(Q
0
)"b

exp(!Q2
0
)

Q
0

. (47)

Now, we shall give necessary and sufficient con-
ditions to obtain solution to above systems
(46)—(47) and we also give formulae for the coeffic-
ient p and the unknown thermal coefficients in the
following four cases:

Case 1: Determination of the unknown coefficients
p, o.

Case 2: Determination of the unknown coefficients
p, h.

Case 3: Determination of the unknown coefficients
p, Q

0
(i.e. p, K* ).

Case 4: Determination of the unknown coefficients
p, k (¹ ) (i.e. p, kM (¹ ) ).

In Table 1 we give, case by case, the formulae for
the unknown coefficients and the restriction on
data to obtain the solution of the corresponding
problem.

Now, we shall prove the following results for
cases 1, 3 and 4.

Theorem 1 (Case 1). If data q
0
, Q

0
(i.e. K*), ¹

0
and

¹
&
verify restriction (R

1
), then there exists a unique

similarity solution which is given by Eqs. (41), (42),
(28) and

p"
g8 (Jna8 !1)

Q
0
Jn'(¹

&
)a8

, o"
'(¹

&
)q

0
h (JnaJ !1)

, (48)

where the coefficients gJ and a8 are given by

g8 "erf~1[g (Q
0
, b )], (49)

a8 "
'(¹

0
)

' (¹
&
)Jn

R(Q
0
)» (g8 ). (50)

Proof. From the properties of functions g(x, b), and
erf(x), Eq. (47) admits a unique solution g8 given by
Eq. (49) if and only if g (Q

0
, b )(1, that is (R

1
). We

obtain a8 from Eqs. (46), and (48) from Eq. (45). K

Theorem 2 (Case 3). If the coefficients p and Q
0

(i.e.
K*) are unknown, then there exists a unique sim-
ilarity solution given by Eqs. (41), (42), (28) and

p"
g8 q

0
('(¹

&
#(ho/q

0
))Q

0

(51)

where g8 is given by Eq. (49) and Q
0

is the unique
solution of the equation

erf~1(g (x, b ) )"R~1A
'(¹

0
)

aJn'(¹
&
)
R (x)B,

x'Q~1(bJn)'0. (52)

Proof. In this case, the system of Eqs. (46) and (47)
is equivalent to

g"erf~1 (g (l, b )), (53)

erf~1(g(l, b ) )"R~1 A
'(¹

0
)

aJn'(¹
&
)
R(l)B , (54)

where a, b, g are defined in Eqs. (45a), (45b) and
(45c) and

l"Q
0
'Q~1(bJn). (55)

Eq. (54) in variable l is equivalent to

F (l)"H(l), l'Q~1(bJn). (56)
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Table 1
Unknown thermal coefficients through a free boundary problem

Case no. Unknown Restriction Solution
coefficient

1 p, o R
1 p"

gJ (JnaJ !1)

Q
0
Jn'(¹

&
)aJ

, o"
'(¹

&
)q

0

h(JnaJ !1)

where
g8 "erf~1[g(Q

0
, b)]

aJ "
' (¹

0
)

' (¹
&
)Jn

R (Q
0
)» (gJ )

2 p, h R
1

p is given as in Case 1, h"
'(¹

&
)q

0
o(JnaJ !1)

where g8 and a8 are given as in Case 1

3 p, Q
0

— Q
0
"l8 , p"

g8

A'(¹
&
)#

ho
q
0
B lJ

with

g8 "erf~1[g(lJ , b)] where l8 is the solution of

R(erf~1(g(x, b )) )"
' (¹

0
)

aJn'(¹
&
)
R(x),

x'Q~1(bJn )

4 p, k(¹ ) R
1
, R

2
p"

g8

A'(¹
&
)#

ho
q
0
BQ

0

, k(¹ )"
C(¹ )

CQ
0 P

T

T3

C (z) dzD
2

where g8 is given as in Case 1

Note: The unknown thermal coefficients can be obtained by the following transformations: K*"Q2
0
/q2

0
, kM (¹ )"q

0
k(¹ ).

From the properties of functions F and H, Eq.

(56) has a unique solution Q
0
'Q~1(bJn ). Then,

we obtain a unique solution for the systems (53)
and (54), and from Eqs. (45a), (45b), (45c) and (55)
we deduce Eq. (51). K

Theorem 3 (Case 4). If data q
0
, Q

0
(i.e. K*), ¹

0
,

¹
&
, h and o satisfy restrictions (R

1
) and (R

2
), then

there exist a unique similarity solution which is given
by Eqs. (41), (42), (28) and

p"
g8 (Jna!1)

Q
0
Jn'(¹

&
)a

, k (¹ )"
C(¹ )

CQ0 P
T

T3

C(z) dzD
2
,

(57)

where gJ is given by Eq. (49).

Proof. The systems (43) and (44) in the unknown
p is equivalent to

g(g, a)"gAQ0
,

1

JnB , (58)

erf(g)"g (Q
0
, b ). (59)

As we have seen in Theorem 1, Eq. (59) admits
a unique solution g8 , given by Eq. (49), if and only if
(R

1
) is satisfied.

If data satisfies (R
2
) then g8 is the solution of

Eq. (58). From Eqs. (45a), (45b), (45c) and (49) we
obtain expression (57) for p and we obtain k(¹ )
from (1 bis).
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3. Unknown thermal coefficients through a moving
boundary problem

In order to determine two unknown thermal
coefficients we must consider the moving boundary

problem (P
1
), where s(t) is defined by s(t)"2pJt

for a given p'0, º(t) is given by (4 bis) and the
material verifies condition (1).

The temperature ¹ of this problem is given by
Eqs. (41) and (42). Then the two unknown coeffi-
cients can be chosen among o, h, k (¹ ) and Q

0
,

which must verify Eqs. (43), (44) and the condition
(1) when k(¹ ) is one of the thermal coefficients to
determinate. That is, we shall consider the follow-
ing cases:

Case 5: Determination of the unknown coefficients
h, o.

Case 6: Determination of the unknown coefficients
h, k (¹ ) (i.e. h, kM (¹ ) ).

Case 7: Determination of the unknown coefficients
o, k (¹ ) (i.e. o, kM (¹ ) ).

Case 8: Determination of the unknown coefficients
Q

0
, k (¹ ) (i.e. K*, kM (¹ )).

Case 9: Determination of the unknown coefficients
Q

0
, o (i.e. K*, o).

Case 10: Determination of the unknown coef-
ficienst Q

0
, h (i.e. K*, h).

In Table 2 we give, case by case, the formulae for
the two unknown thermal coefficients and the re-
striction for data to obtain a similarity solution of
the corresponding problem.

Now, we shall only give the proof of the follow-
ing results for cases 7, 8 and 9.

Theorem 4 (Case 7). If data q
0
, Q

0
(i.e. K*), ¹

0
, ¹

&
and p satisfy restrictions (R

1
) and (R

3
), then there

exists a unique similarity solution which is given by

Eqs. (41), (42) and

o"C
erf~1(g(Q

0
, b) )

pQ
0

!'(¹
&
)D

q
0
h

, (60)

k(¹ )"
C(¹ )

CQ
0 P

T

T3

C(z) dzD
2
. (61)

Proof. The equations (46) and (47) in the unknown
o are equivalent to

erf(g)#
g

Jn (g!pQ
0
'(¹

&
) )

R (g)"gAQ
0
,

1

JnB,
(62)

erf(g)"g (Q
0
, b), (63)

where g and b are defined in Eqs. (45a), (45b), (45c)
and Eqs. (62) and (63) is a system in the unknown g.

As we have seen in Theorem 1, Eq. (63) admits
a unique solution g"g8 , given by Eq. (49) if and
only if (R

1
) is satisfied.

This solution g8 satisfies Eq. (62) whenever

p"
erf~1(g (Q

0
, b ) )

Q
0
'(¹

&
)

]C1!
R(erf~1(g(Q

0
, b)) )'(¹

&
)

R(Q
0
)'(¹

0
) D , (64)

this is (R
3
). On the other hand, the right-hand side

member of Eq. (64) is positive because the proper-
ties of the function ¼

3
(see Appendix A). By using

Eq. (45) we obtain o which is given by Eq. (60). The
coefficient k(¹ ) is obtained as in Theorem 3. K

Theorem 5 (Case 8). If data q
0
, o, h, ¹

&
, ¹

0
and

p satisfy restrictions (R
4
) and (R

5
), then there exists

a unique solution which is given by Eqs. (41) and (42)
and

Q
0
"

r

Je2!1
, k (¹ )"

C(¹ )(e2!1)

r2A P
T

T3

C(z) dzB
2
, (65)
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Table 2
Unknown thermal coefficients through a moving boundary problem

Case no. Unknown Restriction Solution
coefficient

5 h, o R
1
, R

3
h"C

erf~1(g(Q
0
, b))

pQ
0

!'(¹
&
)D

q
0
o

, with o'0 arbitrary

6 h, k(¹ ) R
1
, R

3
k(¹ )"

C(¹ )

CQ0 P
T

T3

C (z) dzD
2

h is given as in Case 5

7 o, k(¹ ) R
1
, R

3
o"C

erf~1(g(Q
0
, b ))

pQ
0

!' (¹
&
)D

q
0
h

k(¹ ) is given as in Case 6

8 Q
0
, k(¹ ) R

4
, R

5
Q

0
"

r

Je2!1
k(¹ ) is given as in Case 6

9 Q
0
, o R

6
Q

0
"l8 , o"

q
0
h A

gJ
plJ

!'(¹
&
)B

where g8 "erf~1[g(l8 , b)] with l8 is the solution of

PAx,
1

p' (¹
&
)B"Z

2
(x), with x'Q~1(bJn)

10 Q
0
, h R

6
Q

0
is given as in Case 9,

h"
q
0
o A

gJ
plJ

!'(¹
&
)B , where g8 and l8 are given as in Case 9.

Note: The unknown thermal coefficients can be obtained by the following transformations: K*"Q2
0
/q2

0
, kM (¹ )"q

0
k(¹ ).

where

e"pA'(¹
&
)#

ho
q
0
B'1,

r"S logA
q
0
' (¹

&
)

pho'(¹
0
)
'0. (66)

Proof. The systems (46) and (47) in the unknown
Q

0
is equivalent to

erf(el)#
eq

0
phoJl

R(el)"
1

Jn
R(l)#erf (l), (67)

erf(el)!erf(l)"bR(l), (68)

where l, b and e are defined in Eqs. (55), (45a), (45b),
(45c) and (66), respectively.

The systems (67) and (68) is equivalent to

erf(el)!erf(l)"bR(l), (69)

R(el)
eq

0
phoJn

"A
1

Jn
!bBR (l). (70)

Eq. (70) in variable l admits a unique solution

l8 "
r

Je2!1
with r"S logA

q
0
'(¹

&
)

pho'(¹
0
)B (71)
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if and only if

q
0
'(¹

&
)

pho'(¹
0
)
'1 and pA'(¹

&
)#

ho
q
0
B'1. (72)

The solution l8 also solves Eq. (69) if (R
1
) is

satisfied and if the data verify the condition

erfA
r

Je2!1B#bRA
r

Je2!1B
!erfA

re

Je2!1B"0, (73)

when

q
0

pho
'1 (74)

is provided. Then, l8 solves Eqs. (69) and (70) if the
conditions (72), (74), (R

1
) (which are equivalent to

(R
5
) ), and (R

4
) are satisfied. Moreover, if (R

4
) and

(R
5
) are verified then there exists a unique solution

Q
0
"lJ given by Eq. (65). The coefficient k (¹ ) is

obtained as in the Theorem 3.

Theorem 6 (Case 9). If data q
0
, o and ¹

&
satisfy the

restriction (R
6
), then there exists a unique similarity

solution which is given by Eqs. (41), (42) and Q
0
, o

are given by

o"
q
0
h A

g8
pQ

0

!'(¹
&
)B, (75)

where gJ is given by Eq. (49) and Q
0

is the solution of
the equation

PAx,
1

p' (¹
&
)B"Z

2
(x) with x'Q~1(bJn).

(76)

Proof. The systems (46) and (47) in the unknowns
Q

0
, o is equivalent to

erf(g)!erf(l)"bR (l), (77)

R(g)A 1#
1

g/(p'(¹
&
)l)!1B

1

Jn

"A
1

Jn
!bBR(l) (78)

in the unknowns g and l, which were defined by
Eqs. (45a), (45b), (45c) and (55).

From Eq. (77) we have

g"erf~1(g (l, b )) for l'Q~1(bJn). (79)

If we replace Eq. (79) into Eq. (78) we obtain

1#
1

q
0

p' (¹
&
)
Z

1
(l)!1

"

'(¹
0
)

'(¹
&
)

R (l)
R(erf~1(g (l, b) ) )

(80)

which is equivalent to Eq. (76). This equation has
a unique solution x"l8 if and only if p' (¹

&
))1,

that is (R
6
). In this case we obtain one solution

g8 "erf~1(g (lJ , b )) and Q
0
"lJ . Therefore, there

exist a unique solution Q
0
, o given by Eqs. (75), (49)

and (76). K

4. Conclusion

We determine unknown thermal coefficients of
a semi-infinite material that verifies the Storm con-
dition through a phase-change process for a non-
linear heat conduction equation with an overspeci-
fied condition on the fixed face. We also give neces-
sary and sufficient conditions for the existence of
a solution and we give the corresponding formulae.

Nomenclature

¹(x, t) distribution of temperature in the
semi-infinite material x'0 at time
t

x spatial variable
t temporal variable
s(t) free boundary
h heat latent of fusion by unit of mass
o density of mass of the material
c
p
"c

p
(¹ ) specific heat per unit of mass (con-

stant pressure)
CM (¹ )"oc

p
(¹ )specific heat per unit of volume

kM (¹ ) thermal conductivity
¹

&
change-phase temperature

¹
3

reference temperature (¹
3
(¹

&
)

q
0
, ¹

0
, p constants (¹

0
O¹

3
).
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Appendix A

Consider the following parameters:.

a"A'(¹
&
)#

ho
q
0
B

q
0

hoJn
,

b"C1!
'(¹

0
)

'(¹
&
) D

1

Jn
(

1

Jn
,

r"S logA
q
0
' (¹

&
)

pho'(¹
0
)B.

We define the following real functions which have
been used in the text and in the tables:

R(x)"
exp(!x2 )

x
, » (x)"x exp(x2 ),

Q(x)"Jnx exp(x2 ) erf c(x), x'0,

g(x, p)"erf(x)#pR(x), p'0, x'0,

F (x)"erf~1 (g (x, b)) for x'Q~1(bJn),

H(x)"R~1A
(1/Jn)!b

a
R(x)B, x'0.

¼
1
(x)"R~1((1!Jnb )R(x) ),

¼
2
(x)"erf(¼

1
(x))!bR(x),

¼
3
(x)"erf(x)!¼

2
(x), x'0,

h
1
(x)"

1

Jx2!1
, h

2
(x)"xh

1
(x), x'1,

H
1
(x)"g (rh

1
(x), b ), H

2
(x)"erf(rh

2
(x) ), x'1,

Z
1
(x)"

F (x)

x
, x'Q~1 (bJn),

Z
2
(x)"

'(¹
0
)

'(¹
&
)

R(x)

R(F (x))

"

'(¹
0
)

'(¹
&
)
exp(x2(Z2

1
(x)!1))Z

1
(x),

x'Q~1(bJn ),

PAx,
1

p'(¹
&
)B"1#

1

1

p'(¹
&
)
Z

1
(x)!1

,

x'Q~1(bJn),

which satisfy the following properties:

R(0`)"#R, R (#R)"0,

R@(x)(0, ∀x'0,

»(0)"0, »(#R)"#R,

» @(x)'0, ∀x'0,

Q(0)"0, Q (#R)"1, Q@ (x)'0, ∀x'0,

g(0`, p)"#R, ∀p'0, g (Q~1(pJn), p)"1

for 0(p(1/Jn,

g(#R, p)"G
1`

1~

for

for

p*1/Jn,

0(p(1/Jn,

Lg

Lx
(x, p)"

G
(0, ∀x'0 for p*1/Jn,

(0, 0(x(S
p

2((1/Jn)!p)
for 0(p(1/Jn,

"0, x"S
p

2((1/Jn)!p)
for 0(p(1/Jn,

'0, x'S
p

2((1/Jn)!p)
for 0(p(1/Jn,

F (Q~1(bJn ))"#R, F(#R)"#R,

F @(x)

"G
(0 if Q~1(bJn)(x(S

b

2((1/Jn)!b )
,

"0 if x"S
b

2((1/Jn)!b)
,

'0 if x'S
b

2((1/Jn)!b)
,
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F (x):S logA
x exp(x2 )

Jn ((1/Jn)!b)B
when xP#R,

H(0)"0, H(#R)"#R, H @(x)'0,

H(x):S logA
ax exp(x2)

( (1/Jn)!bB when xP#R,

¼
1
(0)"0, ¼

1
(#R)"#R,

¼ @
1
(x)'0, ∀x'0,

¼
1
(x):S logA

x exp(x2)

Jn ((1/Jn)!b
)B

when xP#R,

h
1
(1`)"#R, h

1
(#R)"0, h@

1
(x)(0,

h
2
(1`)"#R, h

2
(#R)"1`, h@

2
(x)(0,

H
1
(1`)"1, H

1
(#R)"#R,

H
1
(e
1
)"g(rh

1
(e
1
), b)"g(x

1
, b )"min

x|R

g (x, b),

x
1
"S

b

2((1/Jn)!b)
, e

1
"h~1

1 A
x
1
r B'1,

H@
1
(x)"G

(0 if 1(x(e
1

"0 if x"e
1

'0 if x'e
1

, H@
1
(1`)"0~,

H
2
(1`)"1, H

2
(#R)"erf(r)(1,

H@
2
(x)(0, H@

2
(1`)"0~,

¼
2
(0`)"!R, ¼

2
(#R)"1,

¼ @
2
(x)'0, ∀x'0,

¼
3
(0`)"#R, ¼

3
(#R)"0,

¼ @
3
(x)(0, ∀x'0,

Z
1
(Q~1(bJn) )"#R, Z

1
(#R)"1,

Z@
1
(x)(0, ∀x'Q~1(bJn),

Z
1
(x)'1, ∀x'Q~1 (bJn),

Z
2
(Q~1(bJn) )"#R, Z

2
(#R)"1,

Z@
2
(x)(0, ∀x'Q~1(bJn),

lim
x?`=

exp(x2 (Z2
1
(x)!1))"

1

1!bJn
,

P (Q~1(bJn), g)"1 ∀g'0,

P (#R, g)"G
1#

1

g!1

#R

if gO1

if g"1

,

LP

Lx
(x, g)"G

'0

(0

if g*1

g(1
.

Appendix B

Let

a"A'(¹
&
)#

ho
q
0
B

q
0

hoJn
,

b"C1!
'(¹

0
)

'(¹
&
) D

1

Jn
(

1

Jn
,

r"S logA
q
0
' (¹

&
)

pho'(¹
0
)B , e"pA'(¹

&
)#

ho
q
0
B.

We define the following conditions for data
which have been used as restrictions in the text and
in the tables:

(R
1
) Q

0
'Q~1 (bJn ).

(R
2
) R(erf~1(g(Q

0
, b ) ))"

'(¹
0
)

aJn'(¹
&
)
R(Q

0
).

(R
3
) p"

erf~1 (g (Q
0
, b))

Q
0
'(¹

&
)

]C1!
R (erf~1(g (Q

0
, b) ) )'(¹

&
)

R (Q
0
)'(¹

0
) D .

(R
4
) pA'(¹

&
)#

ho
q
0
B'1
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and

erfA
r

Je2!1B#bRA
r

Je2!1B
!erfA

re

Je2!1B"0.

(R
5
) 1!

q
0

pho
(0(1!

'(¹
0
)

' (¹
&
)
(QA

r

Je2!1B .

(R
6
) p'(¹

&
))1.
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